Design optimization of a structurally flexible
wave energy converter

Austin S. Berrier and Bryony L. DuPont

Abstract—Several wave energy converter (WEC) design
archetypes have been recently proposed that are made of
flexible materials. These designs use electroactive materials
to directly incorporate their power take off (PTO) units into
their hull, and are capable of extracting power by damping
structural deformations. The built-in system redundancy of
flexible WECs is designed to reduce the cost of a single PTO
failure as well as decrease system deployment complexity.
Due to the small number of developers and researchers
working with flexible WECs, however, the design space of
flexible WECs is still largely unexplored in practice, and
no work to date has used an optimization algorithm to
tune the geometric parameters of a flexible WEC design
to its deployment location. Here we study increasing the
mean power output of a flexible submerged tube by first
co-optimizing its geometry and submergence, and next
optimizing its material parameters. We use a deterministic
discrete pattern search algorithm to aim for a pragmatically
low number of function evaluations to convergence, and
model each potential device using customized degrees
of freedom in the boundary element method software
Capytaine. We determine that tuning the geometry of a
device to its deployment location can lead to significant im-
provements in power output from a reference design, while
tuning the material parameters only leads to marginal
improvements. We anticipate that our work can be used as
a case study for using optimization algorithms to improve
the performance of other flexible WEC design archetypes.

Index Terms—Design optimization, Flexible materials,
Structural analysis, Generalized body modes

I. INTRODUCTION

OMMERCIAL wave energy projects to date are

primarily design archetypes that generate power
from rigid body motion. These designs typically reso-
nant at a single incident wave frequency, and typically
require control strategies to increase the frequency
range of power capture. Control strategies are used to
effectively force system resonance, and come at the cost
of additional system complexity and potentially high
motion amplitudes or PTO component forces in PTO
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components, requiring extensive repairs. To address
the inherent limitations of a single degree of freedom
system, some wave energy developers and researchers
have proposed flexible WEC design archetypes that
are able to resonate at any number of incident wave
frequencies. Flexible WEC designs could be potentially
unrolled at their deployment instead of being directly
towed, simplifying construction logistics and complex-
ity.

Flexible design archetypes include variants of their
rigid body counterparts, including oscillating surge
devices [1], attenuators [2], heaving point absorbers
[3], and oscillating water columns [4]. Another notable
device includes the Anaconda, which uses traveling
deformation waves to harness power at its end [5].
We study here the flexible equivalent of a rigid body
attenuator design, a submerged flexible tube similar to
that being developed by SBM Offshore, Inc., and built
out of a dielectric elastomer generator material [6]. The
material itself combined with power electronics can be
used to convert power directly from wave induced me-
chanical deformations [7]. Flexible devices are modeled
as continuous systems, and have an infinite number of
resonant frequencies. Because of this, we can tune the
resonant frequencies of the tube to respond the most
to the incident wave environment.

A few wave energy devices have been made or
studied that are made of flexible materials. Much work
has gone into just studying the capabilities of these
devices without regards to control strategies. Most
work to date uses an objective function of produced
power or produced power divided out by a cost proxy
of surface area or volume.

WEC hydrodynamic research to date has primarily
focused on rigid body systems, and design optimiza-
tion of WEC designs have too to improve device ob-
jectives such as power performance, levelized cost of
energy proxies, economic return, or component reliabil-
ity. Much is then left unexplored in using optimization
algorithms to improve optimal designs for flexible
wave energy. We explore here optimizing the design
of a flexible WEC in two stages - first, co-optimizing
its geometry and submergence; and second, optimizing
the material parameters of a reference design.

II. DESIGN ASSESSMENT

Wave energy converter design optimization is typi-
cally performed using a set of geometry parameters to
assess a device. The algorithm used to optimize a de-
vice can be pragmatically based on the required time to
evaluate each design’s objective, as well as the number
of design variables and search space complexity.



For example, [8] and [9] both studied optimizing the
radii and drafts of a two-body heaving cylinder model,
while both [10] and [11] used a genetic algorithm to
improve the hydrodynamic design of a device using
bicubic surfaces.

We outline here the automated process used to assess
each set of flexible tube design variables #. This design
was first modeled by [12] and further studied by [13],
and we build entirely off their modeling work here.
The geometry of each tube can be completely described
by its static radius r and length L. Its spatial location
is described by its submergence z; and pitch angle 6,
if we locate it at 0 degrees relative to incident waves,
although we consider only a horizontally oriented tube
here (6, =0).

We quantify each design performance by its ex-
pected annual power output at Humboldt Bay, Califor-
nia. Each function evaluation time takes an extensive
amount of time (5 minutes up to 1 hour), so we priori-
tize obtaining an improved design in as few iterations
as possible. We do this by making discrete search step
sizes d in the design space 7 that get progressively
smaller over each optimization run. In this way, we can
obtain an improved solution in less than approximately
50 total iterations.

A. Design Variables

We sequentially performed two different optimiza-
tion setups as two different ways to approach optimiz-
ing a flexible WEC design:

1) Tube geometry and submergence, given fixed

material parameters:

T = [Tv L, zs]

a) r,, the static radius of the tube
b) L, the length of the tube
c) zs, the average submergence of the tube
Where K,,.; = 900 kPa/m? and 7, = 38 kN and
are described next.
2) Tube material properties, given a fixed design
geometry and submergence:

Z= [Kmah Ts}

a) K,q, the stiffness of the elastic material
b) T, the pretension in the material fibers
Where 75, L, and z; correspond to the starting
reference design used in 1).
Each search variables was bounded and discretized
with the values in the following table:

Variable € [Bounds] Discretization
s €0.1,2.5] m 0.1
L € [20,200] m 25
zs € [-25.0,—0.1] m 0.25
Komat € [100,3000] kPa/m? 50
T, € [10,200] kN 2

B. Constants

Values listed in the following table are constant for
each tube design for all design optimizations.

Fig. 1. Example mesh of submerged tube

Variable Name Value
Mode count N 5
Tube thickness t 0.10 m
Tube density Pruve  532.6 kg/m?>
Tube material damping Binat 17.8 kPa-s
Viscous damping coefficient = Bp 8r-10~¢
Water density p 1000 kg/m?
Water depth d —0co m

C. Meshing

Each design mesh is generated as a cylindrical tube
with its center at (0,0, z;). The shortest deep water
incident wavelength at our deployment location is 16.4
m, so using the meshing suggestions given by [14], we
use a characteristic length along the tube’s length of
1.0 m. An example mesh is shown in Fig. 1.

D. Creating Mode Shapes

To assess the modal vibrations of the bulging de-
vice, we can define N custom degrees of freedom in
a frequency domain boundary element method tool
that correspond to the device’s deformation modes.
This is known as generalized body modes analysis,
and has been used to study structural deflections in
both rigid body and flexible devices. We follow here
the mathematical procedure of [12], who derived the
modal equations of motion for the device, and the
notation and modal matrices of [13].

We first define the modal variable x(z,t) such that
Ox/0t = U(x,t), the velocity of the fluid inside of the
enclosed tube.

Using mass conservation and the assumption of
small radial deformation amplitudes, we can use a
Taylor series approximation to define the axisymmetric
radial deformation dr of any point along the tube due
to each mode:

Ix
= Ts 1- = s
or 9 r
rs OX
R o

To define x(z,t) for each set of design variables, we
first need to solve the nonlinear dispersion relationship
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for modal frequency w,

knaL K, K,1L knaL
0=l tanh( ’1>— .1 tan( .1 >

2 2 2 2
K, oL K, koL knoL
0= 2’2 tanh( 2’2)— ’22 tan( ’22 )
prr2L - w? K2 n kn,2
7Mw37«72 + 2Km kn,Q Kn,2

K, koL
- tanh ( 2”) tan ( "’22 )

Where the modal wavenumbers k,, ; and K, ; for each
of the two mode types (i = 1, 2) are related to each set
of frequency roots w1 and wy, 2:

2 1
i = D; <\/1 + ~TepD? wp s — 1)
9 2m

1
K2 = 1+ =T.,pD? w2, +1
o5 (o)

Each set of nonlinear equations is solved by first
discretizing a set of modal frequencies from a small
value € to 27 rad/s. Each root was found by checking
where a small change in frequency caused a change
in sign of g(w) or h(w). Each of these frequencies
was then used as a starting point for SciPy’s [15]
fsolve function to numerically find each actual root
wy. The frequencies were then sorted by magnitude
from smallest to largest, and then trimmed off after
n degrees of freedom. The two different mode shapes
are then as follows:

Xn,1 = c18in (ky 12) — cosinh (K, 1) 1)
Xn,2 = €308 (kp 2x) + ¢4 cosh (K, o) ()

Where the constants ¢; to ¢4 are as follows:

K, 1L ky 1L
¢ = tanh( "2’1 ) /cos (21>
k1L K,1L
¢y = tan <L21> /cosh <"21>
Kn L k'n L
c3 = K,, o tanh —m2 cos [ ~2~
’ 2 2
ke oL K, oL
¢y = ky 2 tan (;) /cosh (;)

We then can normalize each function x; according to

[13]:
2
1 [k M
N? == 2de + ——— [ v
! L/L/QXZ I+P7TT§L (XZ L/2>

That is, each function y; and derivative are redefined
as follows:

. 1
Xi = ﬁZXT
Oxi 1 0x;
or N, Ox

We then define the radial deformation function ér
for each modal frequency, and include them as gen-
eralized degrees of freedom in Capytaine. Using the
notation of [16], each mesh face centered at location

(T, Ym, zm) Will have corresponding Cartesian defor-
mations (u, v, w):

u=20

Ym
v="—.0r

Ts

Zm T Zs
w = - or

T's

E. Assessing Modal Response Amplitudes

We then evaluate the added mass A(w), radiation
damping B, .q(w), and excitation force F., (w) matrices
due to the waves radiated by each degree of freedom
and diffracted by the still tube in a 0 degree incident
wave. The notation f(w) here denotes a function f
of incident wave frequency w. All hydrodynamic pa-
rameters were found in the boundary element method
software Capytaine [17], a Python rewrite of the Matlab
code Nemoh [18].

The frequency domain equation of motion for each
modal degree of freedom £ is as follows:

ax
(—w?(M + A(w)) + iw(Byeq + B(w)) + C)
d"
®G)
Where M, B, and C are the frequency independent
contributions to the modal mass, damping, and stiff-
ness matrices, respectively evaluated as:

M = prr’L -1,

B = prr’né + pBgre
wi

C = M

2

Wn

The modal damping terms £ and e are due to wall
damping and damping due to the tube’s inner flow:

3 —/L/2 X 03 g
EA L2 Or Oz .

L2
€;j = / XiXjdx
—L/2

And the constant 7 is a dissipation coefficient propor-
tional to the material’s total material and power take
off damping;:

hsTrs

n= p (Bmat + Brro) 4)

Note that &;; has the following alternative form that
relates to the linearized tube deformations dr:

5_.4/”2 B ANEE A
Y2 o) 2 Oz 2 Ox

£ = —/ oriordx

2
Ts J—L/2

S

=F.,(w)
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Fig. 2. Probability distribution of incident wave periods at Humboldt
Bay, California

We then calculate the total dissipated power spec-
trum Piyiqi(w) due to each modal response amplitude
velocity way;:

1 n n o
Piotar(w) = §pwr3nw2 Z Z R(ama; )& m )
m

This power spectrum is a useful metric for using the
device as a passive or active floating breakwater. We
are only interested in the mechanical power dissipated
by the PTO Ppro(w) damping for potential conversion
into electrical power, so we take a ratio of the PTO
damping to the total material damping:

Bpro

- Prro. p 6
BPTO + Bmat tOtal(W) ( )

Ppro(w)

F. Calculating the Optimization Objective Function

We then use a probability distribution of our poten-
tial deployment location’s annual wave period distri-
bution to calculate the device’s average power output
up:

e — /0 " Prrolw) - plw)de )

We chose to study an optimal design located at
Humboldt Bay, CA, with an annual average wave
period spectrum divided into 82 equal period bins [19]
p(w) shown in Fig. 2:

The device power was found in every regular sea
state at this lication using a wave height of 1.0 m,
similarly to the methodology presented in [20]. We first
considered a constrained problem that the tube remain
completely submerged in its mean position, so the final
objective function was:

minimize fo,; = —pp

subject to ze < =7y

Next, we remove the constraint that the tube remain
entirely submerged. Because part of the tube may lie
above the free surface, we assume that only the sub-
merged circumference is able to deflect due to incom-
ing waves. We then multiply the final mean dissipated

power value by the proportion of tube circumference
C, below the free surface.

minimize fop; = —Cspp

Where the multiplying constant C is given by the
continuous function:

1 zs < =7y
Cy(zs) = %:(Z/T) ry < e < T
0 Zs 2> Ts

A plot of Cs follows in Fig. 3.
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Fig. 3. A percentage of available power for the submerged device
as a ratio of its submergence zs to static radius rs. The left and
right dotted lines respectively correspond to entirely submerged and
floating tube designs.

G. Finding the Optimal PTO Damping

After evaluating the hydrodynamic coefficients for
a design, we optimize the value Bpro using a one
dimensional line search. The hydrodynamic properties
of each mesh and modal degrees of freedom are both
independent of the PTO damping, so the damping
value can be tuned to each design to optimize the
tube’s total dissipated power. We do this by iteratively
solving Equations (3)-(7) for each tested value Bpro,
and searching for the maximum value of pp. An ex-
ample of this process is shown in Fig. 6, where we can
see that the relationship between Bpro and pp has
a single maximum value. We can see that the power
curve has one peak at the optimal damping value, so
a line search method is appropriate.

H. Update design

We then update the current design variables depend-
ing on how well it evaluated relative to the last tested
design. The entire function evaluation and design vari-
able update process is listed in 1, and can be seen as
an extension of a generalized pattern search algorithm
without the use of dynamic ordering [21].

III. RESULTS
A. Constrained Geometry Optimization

We use the tube geometry and approximate submer-
gence of the design presented in [13] as a starting point
%o for the algorithm, with design variables as follows:

50 = [T7 L7 ZS}
7o = [0.9,60, —-1.25] m
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Algorithm 1: Discrete optimization algorithm
for finding an optimal flexible tube design

Input : Starting design variables 7, list of

possible moves in search space d,

upper and lower variable bounds, and

a starting step size o = 16

1 . Output: Optimal design variables Z,,; and
objective function fop.

1) Set the current design location #. and objective
function value f.. This is equal to the starting
design variables for the 1st iteration, and the
best design found at any time during the
optimization run.

Attempt a new move in design space

Trew = Te + ad along the current search
direction.

Check that the given design is within the given
problem bounds and satisfies the constraint (if
applied), and reject the move if not.

Generate a mesh using the geometry design
variables ry, L, and z,.

Calculate the design’s modal frequencies w;,
using all of the design variables.

Create radial deformation modes using the
modal frequencies, then convert each mode to
Cartesian coordinates for each mesh face.
Evaluate the added mass, radiation damping,
and excitation force matrices over each incident
wave frequency.

Repeat steps a) to c) to optimize the damping
value Bpro for the design using a line search
method.

2)

3)

4)
5)

6)

7)

8)

9)

a)
b)

<)

Calculate the response amplitude a,, for

each mode.

Calculate the dissipated power spectrum
Piot (UJ)

Weight the power spectrum according to
the wave environment to find the mean

power value pp.

Find the next search direction to move, and
check for convergence.

a)

b)

d)

If frew < fec, keep the move to the new
design e, and keep « at the same value.
Set fopt = frnew, and go to 1).

If the move is worse, multiply a by -1 to
search in the other direction. If both search
directions have been checked, go to the
next move d in the list and go to 2).

If all variables have been searched without
finding any better solution, reduce « by a
factor of 1/2 and go to the first search
direction d. Go to 2).

If « =1 and there are no better moves
along any search direction for any variable,
the optimization is considered to be
converged. Return Z,, and fop.
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Fig. 4. Radial deformation mode shapes of the optimal constrained
design.

For the constrained problem, the algorithm converged
to the final design in 24 iterations:

[r, L, Z5)opt = [1.1,145.0, —1.25] m

The optimal design had a 4.4 times increase in power
while requiring an increase in PTO material usage
of 3.0 times, leading to a power per material usage
increase of 49%. The optimal design is very close to
the constraint z; < —r; but still could be closer given
a possible discrete move along either z, or rs. We note
that the reference design 7y we used was itself close
to the imposed constraint, however, and many large
discrete moves at the beginning of the optimization
were unable to be made because they would violate the
constraint (i.e. the tube radius would grow too large or
the submergence would be too small).

While the constraint itself was useful for reducing
the number of required evaluations to convergence, it
does so at the cost of potentially converging to a sub-
optimal solution. This could be potentially addressed
by adding a fourth discrete move that moves in both
the radius and submergence directions, but was not
within the scope of this study.

An incident wavelength the length of the optimal
145.0 m tube corresponds to a deep water wave period
of 9.64 s, which corresponds to near the deployment
location’s dominant wave period.

The first three mode shapes of this design can be seen
in Fig. 4. Each mode shape has a maximum normalized
radial deformation of about 0.10 m, or about 9% of
the tube’s radius. Multiplying the mode shape by its
corresponding response amplitude & lets us find the
actual deformation along the tube at any given point
and incident wave frequency.

The response amplitude operators a for the first
three modes can be seen in Fig. 5. We can see that
the maximum response amplitude decreases for the
higher frequency modes that have higher amplitudes,
meaning that each of the three shown modes has ap-
proximately the same radial deformation as the others
at their maximum response. The Oth mode appears
to have the largest bandwidth overall, with the 1st
and 2nd modes both having a sharper peak along the
incident wave periods.

The dissipated power take off power spectrum
Ppro(w) for the optimal constrained design can be
seen in Fig. 6. The period weighted area under this
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Fig. 6. The dissipated power spectrum of the constrained optimal
device

curve gives us the mean dissipated power dissipated
by the power take off material pp. We see for the
optimal constrained design that it has an almost uni-
form power spectrum for the smallest wave period
all the way to 12 second waves. Because 98.2% of all
available waves are 12 seconds or less at our simulated
deployment location, almost all of the produced power
comes from this section. The 2nd mode response peak
around 13 to 15 second waves causes a sharp peak in
the power spectrum, but this peak is only available
to less than 2% of incident waves and so does not
contribute a significant amount to the total estimated
power.

The optimal power take off damping value for the
optimal constrained design can be seen in Fig. 7

B. Material Optimization

The reference design used for the optimization study
was for the design variables listed in the geometry
study with material values found in [12] and [13].

fO = [K’mataTs]
#p = [900, 38] kPa/m?, kN
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Fig. 7. The relationship between the constant Power Take Off
dissipation value and the mean dissipated power by the tube. The
single optimal value of Bpro is shown with the dotted line and
star.

The unconstrained problem converged to the final
design variables in 18 iterations:

[Kmat;Ts]opt = [100, 200] kPa/mZ, kN

The optimal material parameters point to reducing
the stiffness of the rubber material while increasing
the pretension in its inlaid fibers as much as possible.
We note here that both material parameters are along
their respective bounds, but only lead to a marginal
improvement in power value (0.44%). Due to the mag-
nitude of this small improvement, we chose not to
further study tuning material parameters.

C. Unconstrained Geometry Optimization

The best solution found by removing the submer-
gence constraint was found after 32 iterations and had
the following design variables:

[r, L, zs|opt = [2.5,145.0, —2.75] m

This design has the same length to the optimal
design found using the constraint. The optimization
algorithm appears to be favoring finding a larger
bounded static radius r, at that length, and a submer-
gence that places it entirely below the free surface at a
submergence to radius ratio of 1.1. This submergence
ratio is similar to the design found in the constrained
case as well, which had a submergence ratio of 1.14.

Similarly to the constrained case, the improved de-
sign has a greater power per surface area ratio than
the reference design. The optimal design overall had a
19.6 times increase in mean dissipated power while re-
quiring an increase in PTO material usage of 6.7 times,
leading to a power per material usage increase of about
190%. Although this is a promising result, a larger
design with a constant thickness would necessarily
require more power take off damping to dissipate more
power, potentially requiring more system complexity
or up-front costs.
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IV. CONCLUSIONS

We optimized the design of a submerged flexible
wave energy converter by first co-optimizing its sub-
mergence and shape, and then optimizing its material
parameters. We aimed to improve the expected power
output of the device, and found that improvements
in the power to surface area of a design could be
improved from a given reference design by up to 44%.
Increasing the expected power output of a design only
lead to minimal improvements, however.

Further work is needed here to directly incorporate
a cost proxy to penalize increasing material or power
take off design requirements, or by constraining the
maximum radial deformation response. More work
could be done to study and optimize other flexible
design archetypes that have different mode shapes to
the submerged tube considered here.

Future work for optimizing a flexible device could be
also done using a more accurate model representation
of incident wave heights due in an irregular sea state,
and may lead to different optimal designs than those
presented here. The long function evaluation times
required to simulate a single design in this study are
an especially interesting use of design optimization
algorithms, and more work is needed to determine
tradeoffs between design improvements and the com-
putational effort needed to find them.

APPENDIX A
CONVERGENCE STUDIES

We ran a convergence study to determine how many
modes would be required to adequately describe a
defined design’s capable mean power take off dissi-
pation. To do this, we increased the number of used
simulated modes for our reference design and studied
how much additional power each mode contributed
to the total. As seen in Fig. 8, we found that only 3
modes were needed to capture 90% of the device’s total
capable power, and 5 modes were needed to capture
approximately 95Because of this, we set the number of
simulated modes N to be 5 for all other tested designs.

100

80

60 1

401

204

Proportion of Capable Power (%)

0 5 10 15 20 25
Number of Modes N

Fig. 8. Mode number convergence study for total dissipated power.
The horizontal dotted line shows 95% power using 5 modes, and the
solid line shows the 100% total power value using 25 modes.
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