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Abstract

The incorporation of robust design strategies to increase the insensitivity of system performance in the presence of
uncertainty from both internal and external sources into complex system infrastructures can increase system
reliability. This paper presents a novel approach to the robust design of complex cyber-physical systems by
incorporating a high-level topological optimization strategy for network resilience to reduce the effect of cascading
failures. This approach focuses on system robustness after cascading has occurred, and examines performance
trade-offs of the resultant (or degraded) system state. In this research, robustness is defined as the resilience to
initiating faults, where a robust network has the ability to meet system generation requirements despite propagating
network failures. A mathematical model was developed representing a typical power grid network consisting of
generation and demand nodes, as well as node connections based on actual topological transmission line
relationships. Each node possesses either unique power generation or demand attributes, and various network
connection configurations are examined based on system demand requirements. In this model, failure events are
initiated by the removal of a single network connection, and remaining loads are redistributed throughout the
system. Cascading failure effects are captured when the existing network configuration cannot support the resulting
demand load, and transmission line failures propagate until the system reaches a steady state, based on remaining
nodes and connections. By understanding network reactions due to cascading failures, as well as performance trade-
offs required to mitigate these failures, reliability in power grid systems can be increased.
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Introduction

Current literature shows many existing approaches available to understand the effects of failure propagation in
complex infrastructure systems. However, as these systems become increasingly heterogeneous and distributed
(e.g., smart grids, electronic data networks, transportation networks), they become more susceptible to failures
despite continued advances in system specific technology (Ash & Newth, 2007; Hines, Cotilla-Sanchez, &
Blumsack, 2010; S.Pahwa, A.Hodges, C.Scoglio, & S.Wood, 2010). Since complex infrastructure systems operate
in highly stochastic environments, it is not cost-effective (or even possible) to design for total failure resistance from
cascading failures. This research asserts that systems must be designed for failure resilience by incorporating the
effects of fault propagation into optimization objectives, evaluating the performance of the resultant degraded
system state.
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This strategy of optimizing for degraded performance, as an alternative to complete system failure, is
applicable for a wide range of complex infrastructure systems. In a traffic network for example, if a bridge between
two densely populated regions is unavailable due to a vehicle accident, commuters will automatically begin taking
the next fastest (or shortest path) alternative route. To avoid subsequent vehicle accidents, the traffic network must
be able to reliably and consistently support this increased commuter volume, without exceeding the intended
capacity for these routes. Alternatively, designing for failure resilience is equally important in complex systems
with less tangible material flows such as energy (e.g., power grid) or information (e.g., communication network).
Imagine a network of Unmanned Aerial Vehicles (UAVSs) that must gather information, and successfully transfer it
to each other at a desired bandwidth. If a single UAV is unable to transmit data due to unexpected failures, the
remaining vehicles must still be capable of accurately communicating system level information, even at a reduced
rate (Agogino, HolmesParker, & Tumer, 2012). Power grids are especially susceptible to unintended failure, as their
components are primarily exposed to the environment. If a single transmission line is broken due to a falling tree,
the power is immediately redistributed, potentially triggering a cascading failure effect. This paper introduces a
system-level topological approach to the robust optimization of complex infrastructure networks, as a strategy for
mitigating the effects of cascading system failure. The primary goal is to facilitate an understanding between design
trade-offs in system performance and robustness. For example, if system optimization objectives (e.g., cost, ability
to meet demand) were purely deterministic, a traditional optimization approach would suffice. This would provide
the most desirable (e.g., cost) option, assuming negligible vulnerabilities to system failure. Conversely, if a system
required invariant performance with respect to all potential failure scenarios, a purely robust strategy would be
implemented, which would be the most reliable, highest cost option. Robust optimization examines trade-offs
between performance and robustness, considering the effects of both external and internal system uncertainties.

This paper presents a methodology for modeling complex infrastructure systems using this strategy,
accounting for both network attributes and system topology. An adjacency matrix is used to represent the system,
where nodes represent specific network components, and node connectivity represents the physical connections.
Optimization tradeoffs are between performance objectives and performance variability.

Background

Robustness is typically defined in literature as the ability of a system to behave as intended, despite the effects of
uncertainty from both internal and external sources (Clausing, 1998; Phadke, 1989). While the effects of uncertainty
on a system can be accurately predicted in some applications (e.g., manufacturing), it is difficult to characterize this
behavior in complex infrastructure systems, especially as they become increasingly large and distributed. In
addition, systems deterministically optimized for performance (e.g., cost) are particularly susceptible to failures due
to uncertainty as they are finely tuned to meet a specific objective (or set of objectives) without consideration of
failure events. In complex infrastructure systems, a single initiating fault can propagate throughout the network
uncontrollably, resulting in severely degraded performance or complete failure. To understand these cascading
issues, current methods have employed social network analysis for predicting emergent behavior (S.Pahwa et al.,
2010; Wasserman & Faust, 1994). However, network theory performance metrics (e.g., node degree, centrality) are
too far abstracted from actual complex system behavior and interactions to accurately assess the probability of
cascading failures when creating reliable designs. Specifically, there is no provision to incorporate robustness into
complex infrastructure system design to mitigate the effects of cascading failures from uncertain environmental
events.

Robust Design
While there are many methods contributing to failure propagation in complex systems, these approaches are
typically hardware driven and do not address the formalized concept of robustness, and how complex systems can
be designed to be resilient to failures (Carreras, Lynch, Dobson, & Newman, 2002; Faza, Sedigh, & McMillin,
2009; Kurtoglu, Jensen, & Tumer, 2010; Kurtoglu & Tumer, 2008; Lininger, McMillin, Crow, & Chowdhury, 2007;
North et al., 2002; Papakonstantinou, Sierla, Tumer, & Jensen, 2012; Pottonen & Oyj, 2005; Tumer & Smidts,
2011). In addition, it is difficult to scale component level failure propagation methods to represent large and
distributed networks in terms of computational efficiency. In this context, robust design is defined as the
insensitivity to noise (or uncertainty) on system performance from both internal and external sources (Chen, 2012).
Historically, robust design has been used in manufacturing to minimize unintended consequences
(variability) from uncontrollable environmental effects (Phadke, 1989). One drawback of robust design in
manufacturing is the focus on optimizing a single variable (e.g., size, weight). Expanding on Taguchi’s fundamental
methods (Phadke, 1989), Chang et al. have scaled these principles to complex systems where multiple subsystems
must be optimized independently with limited knowledge of other system design parameters (Chang, Ward, Lee, &
Jacox, 1994). This work outlines the need for an optimization approach accounting for system-level physical and
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intangible noises that are out of the designer’s control. Robust design provides a methodology to design systems
robust to sources of uncertainty, such as failures in the power grid, without the need to understand or reduce these
sources of uncertainty.

The primary issue, however, is creating designs that are robust to the various types of failures and
uncertainty present in complex and largely distributed systems. Many system failures occur as a result of external
occurrences such as extreme weather conditions, and predicting the effects of these events is challenging,
specifically due to unpredicted cascading failures resulting from a single initiating event. Examining the system
topology as a means of increasing design robustness builds on existing approaches, expanding current methods into
complex infrastructure systems, discussed next.

Network Theory and Topological Graph Models

Based on the distributed nature of many complex infrastructure systems, understanding topological effects is
important when designing for failure resilience. Current literature addresses the importance of considering topology
in network optimization, often drawing from network theory where networks are represented mathematically, often
with an adjacency matrix (Hines et al., 2010; Kinney, Crucitti, Albert, & Latora, 2005; Wasserman & Faust, 1994).
To address network relationships, several performance indices are studied in the literature, which can be primarily
categorized into three major classes: reachability measures, vitality measures, and flow measures. For example,
Kinney et al. model the power grid with an adjacency matrix, where each node represents either a generation or
demand component in a network, and arcs connecting the nodes represent connectivity (Kinney et al., 2005). In
their work, failures are examined by removal of a single node, which triggers an overload cascade in the network.
Similar methods are used by Leonardo and Vemuru, where connectivity loss C,, measures network performance
(Duenas-Osorio & Vemuru, 2009).

Another method by Ash and Newth examines the optimization of complex networks with respect to the
average efficiency of the network (Ash & Newth, 2007). Average efficiency (E) was first introduced by Crucitti et
al. and is among the vitality measures (Crucitti, Latora, & Marchiori, 2004). While these types of topological
measures provide valuable information about a specific network, it is important to recognize that these mathematical
models are abstractions of complex systems, and may result in misleading information. Hines et al. have explored
these issues, comparatively evaluating topological metrics within the same system to predict failure magnitudes in
standard test cases (Hines et al., 2010). Their work concluded that while exclusively using topological measures can
provide general information about a system’s reliability, they can be misleading due to the level of abstraction and
should be used in conjunction with a physics-based model.

Methodology

The research presented in this paper integrates robust optimization techniques with system specific network
topology analysis. In this approach, the system network (NAPG case study) is created in MatLab, represented by an
NX N adjacency matrix, where N = N, ! Ng, N, representing the number of generation nodes and N, representing
the number of demand populations. An initial matrix is created randomly, based on user inputs for the desired
number of generation and demand nodes. The generated network is then tested for connectivity, as each demand
population must be serviced (connected) to a generation node to meet expected demand.

System Parameter Design

The research methodology requires one to apply Taguchi’s Parameter Design approach to the system, displaying
how different sources of uncertainty effect system response (Exhibit 1) (Chen, 2012; Phadke, 1989). In this
approach, the system control factors are elements that can be varied within the system, and noise factors are
environmental elements that cannot be controlled. When addressing potential initiating events for fault propagation,
both types of factors must be considered. Failures from external events are addressed in the context of Type 1
(Parameter) robust design, or design intended to minimize performance loss from external noise. To address
internal noise, Type Il (Tolerance) robust optimization can be applied to a design. This method reduces
performance losses due to uncertainty from internal control variables within the system. In the context of the
NAPG, this would include uncertainty due to fluctuations in energy generation from variable sources such as wind
generation or demand fluctuation.

Exhibit 1. Parameter Diagram For The NAPG.
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Lewis et al. combine both Type I and Type Il robust design principles and apply them to complex systems,
in an effort to address uncertainty from both internal and external environment (Lewis, Kalsi, & Hacker, 2001). The
goal of Lewis’ formulation is to meet performance requirements, while minimizing the variation about the mean.
Exhibit 2 outlines this relationship, displaying how the optimized solution may exist at the boundary of an objective,
where variability is greatest (Chen, 2012; Lewis et al., 2001). The objective value of the robust solution is slightly
higher, although with less performance variation. Complex infrastructure systems can benefit from applying this
method, as uncertainties from both sources are present, including external noise factors (e.g., natural disasters) and
internal noise variables (e.g., expected demand); however, research is needed to understand how robust design can
be applied to distributed complex system design.

Exhibit 2. Visual Relationship Between The Deterministic And Robust Solution.
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In this work, the IEEE 14 Test Bus system is used to demonstrate and validate the research methodology
(University of Washington, 1999). This network consists of 2 power generation stations, and 12 additional demand
connections. Since cascading failure is being evaluated in terms of transmission line loading, the physical topology
of lines was considered, based on IEEE 14 transmission line lengths calculated by the Power Systems Engineering
Research Center. A geographical power grid map is constructed (Power Systems Engineering Research Center,
2007); this is an important system attribute as line lengths directly drive connectivity costs. In order to accurately
represent system demand, nominal demand node power requirement values are used from the IEEE 14 system.

Optimization Objective

The robust design of a power grid is addressed using a non-linear optimization formulation. To understand important
power grid interactions and design for failure resilience, an objective function is formulated based on the ability of a
network to satisfy population demand (Dg) after a cascading failure occurs, for the lowest cost (Ct). Both Dg and
Crot are functions of the physics of the network after the occurrence of a fault initiating event in the power grid.
Robustness is incorporated into the objective by minimizing the variation of satisfied demand (GZDE) in the solution

(Eq. 1).

find A

to minimize
fy = Crot(A)
f, = —Dg(A) (1)
f; = GZDE(A)
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subject to
hy: Neomp —1=0
hy: A =[0,1]nxn

where A and N¢opmp, respectively represent the adjacency matrix and the number of disconnected components of the
network. Two constraints are provided to ensure the network is always connected (i.e., there are no separate islands),
and to ensure the elements of the adjacency matrix are either 0 or 1.

Optimization Algorithm

A genetic algorithm (GA) was used within the MatLab Optimization Toolbox (The MathWorks Inc., 2011). Since
Satisfied Demand Variability is part of the objective function, values were normalized so the GA could evaluate
solutions on the same scale. Values were calculated for Cost, Expected Satisfied Demand, and Satisfied Demand
Variance from the original IEEE 14 transmission line configuration. These nominal values were included in the
fitness function for each objective (Eq. 2). In addition, a penalty function was used to penalize solutions in which
the grid is disconnected. This was included to ensure network connectivity after a cascading failure. The resulting
objective is stated as:

Obj,
+ pl:Conn (2)

f(X) = ——D__
™) = {FEE14,

where the Obj,, is the value of the objective functions, IEEE14,, is the calculated objective value from the original
IEEE 14 test bus, and PF_,,,is the penalty function for disconnectivity. This penalty function represents one
element of network theory incorporated into the approach, differentiating it from traditional robust design
approaches.

Optimization Results

The simulation was run for approximately 600 iterations. The resulting plot of Pareto optimal solutions is displayed
in Exhibit 3. In this plot, design values are normalized with respect to the performance of the original IEEE 14
network configuration. Tradeoffs between each optimization objective are explored within this design space, and an
optimal solution is found. The population of the Pareto frontier is sparse due to the finite number of solutions in the
IEEE 14 network. However, it can be seen that with a decrease in Cost, the ability to satisfy Expected Demand after
a cascading failure decreases, and Demand Variability increases.

Exhibit 3. Normalized Pareto Solutions for The IEEE 14 Test Bus Network Using The GA.

0.95 . Robust Design

o 0.75
Q

5055
—_

S35 —

1.42

0.05. 1.34
—— - 1.26
0.5 " 118

0.7 'Bxpected Demand
Cost

To verify this method is producing an optimized robust solution, the simulation was tested with the removal of
demand variance objective. In this version of the solution, only cost and expected demand are considered as
objectives, and variance is ignored (i.e., a conventional optimization). All existing constraints remained, and the
normalized fitness function values are also based on the original IEEE 14 solution. A summary of the simulation
performance metrics is shown in Exhibit 4. Information on the original IEEE 14 network was also provided to
provide a baseline comparison. Based on the results, the Conventional GA solution for cost is slightly lower than
the robust solution. In addition, expected demand satisfied is also lower, since a low cost (Smaller number of
network connections) solution is more affected by failure events. The most significant difference between the
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solutions is in the demand variance: the variance in demand satistied is much lower in the robust solution. The
Conventional GA optimal solution represents a power grid design that is low cost, but less resistant to cascading
failure than the robust solution since the ability to satisfy demand is lower and the variance in demand satistied is
much higher. The Original network cost is the highest, and these results are expected as the IEEE 14 network was

physically constructed based on both population demand and geography.

Exhibit 4. Objective Values For The Original, Deterministic, and Robust Design of the IEEE 14 Test Bus.

IEEE 14 Network Network Expected Demand Network Average Maximum
(GA) Cost Demand Variance Connections Node Degree Node Degree
Original 1212 182 5738 18 2.6 4
Conventional GA 660 224 769 17 2.4 6
Robust Design GA 666 235 235 18 2.6 5

Conclusions and Future Work

This paper presents a novel methodology for the robust optimization of complex infrastructure systems by
incorporating the effects of cascading failure due to variations in system topology. As these systems operate in
highly stochastic environments, systems must be designed for failure resilience by incorporating the effects of fault
propagation into optimization objectives, evaluating the performance of the resultant degraded system state.

Modeling this system mathematically using an integrated physics-based modeling and network analysis
approach provides the opportunity to iteratively test various network connection strategies against an initiating
failure event, and address subsequent cascading failure effects. In this research robustness is represented as the
variability of system performance as a result of uncertain effects (both internal and external) on the system. This is
represented as the removal of a network connection arc in the North American Power Grid case study used in the
paper. This approach characterizes system robustness as the ability of a network to successfully operate in a
degraded state based on designer requirements, minimizing performance variability due to cascading failure effects.
Quantifying the behavior of cascading failures in complex infrastructure systems is a key contribution, as well as
identifying important design tradeoffs between performance and robustness for early design.

The IEEE 14 test bus case study demonstrated the effectiveness of the approach presented, comparing
objective values between the original network, the deterministically optimized network, and the robust design
network. This proof-of-concept simulation highlights the significance of topology configurations within a complex
infrastructure system, and examines the influence of cascading failures from one subnetwork to another. It also
validates the use of a mathematical model as a tool in early complex infrastructure system design, drawing from
several existing approaches in design theory.

One challenge in this research is the ability to validate the method as an accurate abstraction for modern
complex infrastructure systems. While the case studies presented show merit, scaling the method to a larger
network will assist in determining the solution accuracy. Future work will include modeling of synthetic (e.g., IEEE
RTS-96) and real size (e.g., Poland) power grid networks, and comparing the results of this approach to other
solutions in the literature.

Despite these concerns, this research contributes measurably to the field of complex infrastructure system
design by directly addressing the fundamental issue of uncontrollable cascading failures due to existing topological
configurations. Designing for robustness increases the predictability of failure effects by incorporating uncertainty
into a system model, and optimizing for degraded performance variability. In addition, the hybrid approach
presented captures important topological performance metrics from network theory, while maintaining critical
physical relationships necessary to accurately model a system. Incorporating key system characteristics from each
of these design strategies (i.e., network analysis, model based design) will provide higher fidelity system
abstractions than existing network analysis approaches, and alternatively allow higher computational efficiency and
scalability over exclusively physics based simulations. Future work will focus on the continued validation of the
approach presented by comparatively analyzing case study results between this and other methods for complex
infrastructure system design. Specifically, there is additional research required to formulate increasingly accurate
system model abstractions, capturing optimal trade offs between physical properties, simulation assumptions, and
topological relationships. By understanding the effects of these trade offs, designers can create context specific
simulations that balance accuracy, efficiency, and scalability.

Copyright, American Society for Engineering Management, 2014



Hoyle, Piacenza, DuPont, Cotilla-Sanchez

References

Agogino, A., HolmesParker, C., & Tumer, K. (2012). Evolving large scale UAV communication system. /4th
International Conference on Genetic and Evolutionary Computation Companion, Philadelphia, PA.

Ash, J., & Newth, D. (2007). Optimizing complex networks for resilience against cascading failure. Physica A4, 380,
673-683.

Carreras, B. A., Lynch, V. E., Dobson, 1., & Newman, D. E. (2002). Dynamics, criticality and self-organization in a
model for blackouts in power transmission systems. International Conference on System Sciences, Hawalii.

Chang, T.-S., Ward, A. C., Lee, J., & Jacox, E. H. (1994). Conceptual robustness in simultaneous engineering: an
extension of Taguchi's parameter design. Research in Engineering Design, 6, 211-222.

Chen, W. (2012). Design Under Uncertainty. Evanston: Northwestern University.

Clausing, D. (1998). Robust System Design. Retrieved from http://ocw.mit.edu/courses/aeronautics-and-
astronautics/16-881-robust-system-design-summer-1998/lecture-notes/

Crucitti, P., Latora, V., & Marchiori, M. (2004). A model for cascading failures in complex networks. Physics
Review E, 69(4), 045104.

Duefias-Osorio, L., & Vemuru, S. M. (2009). Cascading failures in complex infrastructure systems. Structural
Safety, 31, 157-167.

Faza, A. Z., Sedigh, S., & McMillin, B. M. (2009). Reliability analysis for the advanced electric power grid: from
cyber control and communication to physical manifestations of failure. International Conference on
Computer Safety, Reliability, and Security, Hamburg, Germany.

Hines, P., Cotilla-Sanchez, E., & Blumsack, S. (2010). Do topological models provide good information about
electricity infrastructure vulnerability? Chaos, 20(3), 033122.

Kinney, R., Crucitti, P., Albert, R., & Latora, V. (2005). Modeling cascading failures in the North American power
grid. European Physics Journal B, 46, 101-107.

Kurtoglu, T., Jensen, D. C., & Tumer, I. Y. (2010). A functional failure reasoning methodology for evaluation of
conceptual system architectures. Research in Engineering Design, 21(4), 209-234.

Kurtoglu, T., & Tumer, 1. Y. (2008). A graph based fault identification and propagation framework for functional
design of complex systems. ASME Journal of Mechanical Design, 130(5), 051401.

Lewis, K., Kalsi, M., & Hacker, K. (2001). A comprehensive robust design approach for decision trade-offs in
complex systems design. Journal of Mechanical Design, 123(1), 3-10.

Lininger, A., McMillin, B., Crow, M., & Chowdhury, B. (2007). Use of Max-Flow on FACTS devices. 39th North
American Power Symposium, Las Cruces, New Mexico.

North, M., Conzelmann, G., Koritarov, V., Charles Macal, Thimmapuram, P., & Veselka, T. (2002). E-Laboratories:
agent-based modeling of electricity markets. American Power Conference, Chicago, IL.

Papakonstantinou, N., Sierla, S., Tumer, I. Y., & Jensen, D. (2012). Multi-scale simulation on interactions and
emergent failure behavior during complex system design. ASME Journal of Computing & Information
Sciences in Engineering, 12(3), 10001.

Phadke, M. S. (1989). Quality Engineering Using Robust Design. Upper Saddle River, NJ: Prentice Hall.

Pottonen, L., & Oyj, F. (2005). A method for analysing the effect of substation failures on power system reliability.
15th Power Systems Computation Conference, Liege, Belgium.

Power Systems Engineering Research Center. (2007). Uncertain Power Flows and Transmission Planning. Tempe:
Arizona State University.

S.Pahwa, A.Hodges, C.Scoglio, & S.Wood. (2010). Topological analysis of the power grid and mitigation strategies
against cascading failures. Statistical Mechanics and its Applications, 338(1-2), 92-97.

The MathWorks Inc. (2011). MATLAB version 7.13.0.564. Natick, Massachusetts.

Tumer, I. Y., & Smidts, C. S. (2011). Integrated design-stage failure analysis of software-driven hardware systems.
EEE Transactions on Computers. Special Issue on Science of Design for Safety Critical Systems, 60(8),
1072-1084.

University of Washington. (1999). Power Systems Test Case Archive. Retrieved from http://www.ee.washington.edu
[research/pstca/pfl4/pg_tcaldbus.htm

Wasserman, S., & Faust, K. (1994). Social Network Analysis. New York: Cambridge University Press.

Acknowledgments
The authors would like to acknowledge the support of the University of Alabama Huntsville and NASA Marshall
under grant SUB2012-052.

Copyright, American Society for Engineering Management, 2014



Hoyle, Piacenza, DuPont, Cotilla-Sanchez

About the Author(s)

Dr. Christopher Hoyle is currently Assistant Professor and Arthur Hitsman faculty scholar in the area of Design in
the Mechanical Engineering Department at Oregon State University. He received his PhD from Northwestern
University in Mechanical Engineering in 2009 and his Master’s degree in Mechanical Engineering from Purdue
University in 1994. He was previously a Design Engineer and an Engineering Manager at Motorola, Inc. for 10
years before enrolling in the PhD program at Northwestern University. His current research interests are focused
upon decision making in engineering design, with emphasis on the early design phase when uncertainty is high and
the potential design space is large. He is coauthor of the book Decision-Based Design: Integrating Consumer
Preferences into Engineering Design, published in 2012.

Dr. Joseph Piacenza earned his B.S. in mechanical engineering from the University of South Florida (USF), and
completed his MBA at USF in 2008 with a focus on entrepreneurship and management. While working toward the
MBA, he founded an automotive-based small business, specializing in the restoration and service of European
vehicles. This business was sold in early 2010, and he completed his M.S and Ph.D. in mechanical engineering at
Oregon State University (2012 and 2014 respectively). Dr. Piacenza’s dissertation explored the robust design of
complex infrastructure systems. However, his research interests extend to design theory and methodology,
automotive engineering, and design sustainability.

Dr. Bryony DuPont is an Assistant Professor in the School of Mechanical, Industrial, and Manufacturing
Engineering at Oregon State University. She completed both her M.S. (2010) and her Ph.D. (2013) in Mechanical
Engineering at Carnegie Mellon University. She is affiliated faculty of Oregon State’s Design Engineering
Laboratory - one of the largest academic mechanical design groups in the country - and the Northwest National
Marine Renewable Energy Center (NNMREC). Her work is mechanical design, specifically the development and
application of computational optimization tools for renewable and collaborative energy systems, and for sustainable
product development..

Dr. Eduardo Cotilla-Sanchez is an Assistant Professor of Electrical and Computer Engineering at Oregon State
University. He is part of the Energy Systems research group housed at the Wallace Energy Systems andRenewables
Facility (WESRF). He earned the M.S. and Ph.D. degrees in Electrical Engineering from the University of Vermont
in 2009 and 2012, respectively. His primary field of research is the vulnerability of electrical infrastructure, in
particular, the study of cascading outages. Part of his research is developed through collaborations with Sandia
National Laboratories and Pacific Northwest National Laboratories, among others. He is the secretary of the IEEE
Cascading Failures Working Group.

Copyright, American Society for Engineering Management, 2014



