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ABSTRACT 

This paper presents a multi-level Extended Pattern Search 
algorithm (EPS) to optimize both the local positioning and geometry 
of wind turbines on a wind farm. Additionally, this work begins to 
draw attention to the effects of atmospheric stability on wind farm 
power development. The wind farm layout optimization problem 
involves optimizing the local position and size of wind turbines such 
that the aerodynamic effects of upstream turbines are reduced, 
thereby increasing the effective wind speed at each turbine, allowing 
it to develop more power. The extended pattern search, employed 
within a multi-agent system architecture, uses a deterministic 
approach with stochastic extensions to avoid local minima and 
converge on superior solutions compared to other algorithms. The 
EPS presented herein is used in an iterative, hierarchical scheme – an 
overarching pattern search determines individual turbine positioning, 
then a sub-level EPS determines the optimal hub height and rotor for 
each turbine, and the entire search is iterated.  This work also 
explores the wind shear profile shape to better estimate the effects of 
changes in the atmosphere, specifically the changes in wind speed 
with respect to height on the total power development of the farm. 
This consideration shows how even slight changes in time of day, 
hub height, and farm location can impact the resulting power. The 
objective function used in this work is the maximization of profit. 
The farm installation cost is estimated using a data surface derived 
from the National Renewable Energy Laboratory (NREL) JEDI wind 
model. Two wind cases are considered: a test case utilizing constant 
wind speed and unidirectional wind, and a more realistic wind case 
that considers three discrete wind speeds and varying wind directions, 
each of which is represented by a fraction of occurrence. Resulting 
layouts indicate the effects of more accurate cost and power 
modeling, partial wake interaction, as well as the differences 
attributed to including and neglecting the effects of atmospheric 
stability on the wind shear profile shape. 

 

INTRODUCTION 
As the population of the world grows and sources of fossil 

fuels such as coal and natural gas dwindle and become more difficult 

and costly to access (as well as a major cause of greenhouse gas 
emissions), it is imperative that clean alternative energies, such as 
wind power, are thoroughly explored. Increasing the incorporation of 
wind power into the national power development scheme will help to 
fulfill the substantial increase in power the United States is projected 
to require – a 39% increase over the next 20 years. Additionally, the 
United States Department of Energy has presented the challenge to 
meet 20% of the U.S. total electricity demand via wind power by the 
year 2030 [1]. To meet this challenge and to purvey the merits of 
wind technology, it is important that newly developed wind farms are 
performing optimally, that is; they develop as much power as 
possible, given local wind conditions of the proposed site, turbine 
geometry, and site characteristics.  

The EPS algorithm has been previously applied to optimize 
wind turbine micrositing [2] (the positions of wind turbines within a 
farm), and the current work expands the problem formulation to 
further prove the effectiveness of the EPS algorithm and to create 
farm layouts that more accurately account for actual wind conditions. 
A new cost model is proposed, based on an extensive NREL report 
[3] that estimates cost based on the parameters of turbine rotor radius 
and hub height. The two-parameter cost model is possible due to the 
incorporation of wind shear into the effective wind speed 
calculations. Wind shear is the variance of velocity based on height 
from the ground, and is represented mathematically by the power 
law. Unlike many previous wind farm optimizations that treat turbine 
rotors as points, we consider the effects of partial wake interaction 
across the rotor swept area. A systematic approach is taken to 
statistically determine the rotor-averaged wind speed created by 
partial wake interaction, and the sub-level rotor radius EPS algorithm 
can accordingly adjust the rotor swept area to aid in the optimization 
of cost and power development. Additionally, some of the effects of 
atmospheric stability are considered by accounting for the change in 
wind shear profile shape based on time of day and season. 

In addition, the EPS is installed within a multi-agent system to 
account for each turbine’s design activities.  The agent approach is 
advantageous given that it facilitates multiple objectives and its 
architecture is highly adaptable, such that agents can be removed, 
added, or manipulated easily, without altering other facets of the code 
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[4]. This will be particularly beneficial considering proposed future 
EPS work, which will account for the dynamic nature of the wind 
farm layout problem as new technologies, turbine designs, and local 
environmental factors are considered.   

 
PREVIOUS APPROACHES 

The optimization of wind farm layouts can be based on many 
factors, though previous literature generally focuses on maximizing 
the power development of the farm while minimizing cost. The first 
computational optimization approach to the wind farm layout 
optimization problem was performed by Mosetti et al. in 1994 [5], 
who set up the framework upon which many future optimization 
schemes were based. Within a genetic algorithm (GA) approach, 
Mosetti et al. used chromosomal strings to create a discretized grid 
solution space. Grady et al. [6] improved upon this preliminary work 
primarily by exploiting  greater computational resources,  allowing 
their GA to give superior results. Both of these optimizations utilized 
the 2-D PARK model developed by Jensen [7] and minimize the 
objective of total cost of the farm while simultaneously maximizing 
power development.  

 As the most commonly utilized algorithm for the wind farm 
layout optimization problem, more advanced GA approaches have 
been widely applied, using a variety of objective functions and 
modeling approaches. A Distributed Genetic Algorithm (DGA) 
approach was developed by Huang [8]; while using the same 
discretized space and modeling as Mosetti et al. [5], the DGA was 
able to create layouts that develop more power, utilizing an objective 
function that maximized wind farm profit. Huang then improved on 
the DGA by creating a Hybrid-DGA approach [9] that used both 
global and local objective functions. Wang et al. [10] developed a 
GA that improved on the discretization of previous work by allowing 
for varying shapes and coarseness of the solution space. Similar 
approaches were developed by Sisbot et al. [11] and Emami et al. 
[12], which expanded the use of GAs to solve the wind farm layout 
optimization problem by separating total farm cost and power 
development into distinct objectives, creating multi-objective 
optimizations that allow for focus on initial farm costs. Kusiak et al. 
[13] developed a multi-objective evolutionary algorithm approach 
(similar to a GA) that maximized the annual energy production of the 
farm, a more accurate measure of farm cost than cost modeling used 
in previous work. 

Approaches to solving the wind farm layout problem that utilize 
particle swarm optimization (PSO) are also relevant. PSO algorithms 
are related to both biological swarming behaviors and evolutionary 
computation, and were used by Wan et al. [14] and Chowdhury et al. 
[15] to solve the wind farm optimization problem. The latter 
researchers also considered varying turbine rotor geometries in their 
search [16]. Ozturk et al. [17] developed a different approach, a 
heuristic method, that utilized a weighted multi-objective function 
and a continuous solution space.  

 The current work builds on previous Extended Pattern Search 
research that has been applied to the wind farm layout optimization 
problem with success by DuPont and Cagan [2]. The previous 
application of EPS indicated that the combination of deterministic 
search and stochastic elements characteristic of the EPS were 
particularly well-suited to the multi-modal wind farm layout problem, 
allowing for the development of superior layouts than previous 
algorithms, including comparable genetic algorithms.  

Improving upon previous work, we sought to more accurately 
model the cost of installation of operations and maintenance of a 
potential wind farm. Additionally, the effects of wind shear are not 
typically incorporated into the power development modeling used in 
wind farm layout optimization.  The current paper addresses these 
deficiencies by using a cost model that is derived from the extensive 
NREL JEDI wind farm model [18], using more accurate power 
modeling that is dependent on turbine geometry and wind shear, and 
incorporating the effects of atmospheric stability. Additionally, new 
and varying turbine geometries are optimized, and a profit objective 

function is explored in order to better understand the tradeoffs 
between farm cost and farm power development. 

MULTI-LEVEL EXTENDED PATTERN SEARCH 
This work elaborates on the Extended Pattern Search (EPS) 

algorithm approach to wind farm layout optimization developed by 
DuPont and Cagan [2]. A pattern search is a purely deterministic 
search algorithm [19] that traverses potential solutions using a 
defined series of pattern directions. The search only allows each 
turbine agent to accept solutions for which there is a benefit to the 
objective evaluation. The extensions that give the extended pattern 
search its name are attributes that infuse stochasticity into the search, 
aiding in escaping local minima. Multiple stochastic extensions are 
used throughout the EPS. A randomized initial layout of turbines is 
used in order to establish a broad range of turbine locations while not 
explicitly assigning starting locations. Secondly, the search order is 
randomized such that no turbine’s individual movement is favored 
over another. Thirdly, a popping algorithm is employed that will 
select the weakest turbines (based on power development) and 
attempt to assign them to a new random location, until a certain 
number of attempts are made or the turbine is relocated with a 
superior global evaluation. It has been shown that the EPS is well-
suited to complex layouts problems [20], particularly the wind farm 
layout optimization problem where it performs better than 
comparable genetic algorithms [2]. 

We seek to enhance the performance capability of the EPS by 
making it multi-level – the primary EPS searches through turbine 
locations on a defined continuous solution space, while two 
secondary concurrent EPS algorithms search through varying hub 
heights and rotor diameters in order to select optimal individual 
turbine geometries.  This allows the benefits of the EPS to be 
extended to both the wind farm micrositing problem and turbine 
geometry optimization. A flowchart depicting the basics of the multi-
level EPS is included in Fig. 1. 

 

Fig. 1: FLOWCHART FOR MULTI-LEVEL EPS ALGORITHM 

 A set of four pattern search directions is followed for each of 
the individual EPSs. For the location EPS, the pattern directions are 
(+x, +y, -x, -y) in the x-y solution space. For each of the sub-level 
searches, the pattern directions are (+L, -L, +L/2, -L/2), where L 
represents a length in meters, either changing the height of the hub of 
the turbine in the z-direction or the radius of the rotor. At the start of 
each EPS, the pattern directions are traversed at a given step size, 
which is halved after no further movements are selected for that step 
size. The search exits after a minimum step size is reached, allowing 
the turbine agents to select both precise coordinates and geometries.  

 

MULTI-AGENT SYSTEM METHODOLOGY 
A multi-agent system is the collaboration of semi-autonomous 

software agents, loosely simulating the function of a human design 
team. Each agent represents a single purpose or specialty just as a 
single design engineer would have unique training or experience. 
Individually, agents work internally to meet their own particular 
goals. However, if given the means to communicate effectively 
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within a group, a multi-agent system can interconnect and 
collectively work towards a balance between the global optimum and 
their individual objectives. The agents in the current system, which 
are both autonomous and capable of collaboration, are called 
collaborative agents [21]. Collaborative agents mimic the 
performance of a human design team, and it has been shown in 
previous work that, similar to a human design team, the solutions 
acquired by the collaborative agents may be superior than the sum of 
the capabilities of the individual agents involved [22]. The 
cooperation of agents representing strategies and capabilities grouped 
together in multi-agent systems has been shown to be very successful 
in solving engineering design problems in previous systems, such as 
A-Teams [23], A-Design [24], and blackboard systems [25]. 

In the current work, an individual agent represents a single 
turbine. The agent is equipped with memory capability for its current 
location, previous location, current and most recent previous 
geometric parameters, and current upstream and downstream 
turbines. An initial number of agents are created, with additional 
individual turbine agents added to determine layouts with the optimal 
number of turbines. The EPS is performed within one agent at a time, 
with each agent selecting its new potential locations, calculating the 
global objective, and determining whether to take a potential move. 
Additionally, each agent chooses a potential new hub height and rotor 
radius, evaluates globally, and determines whether or not to take on 
new geometry. Once an agent has completed an instance of the EPS, 
a new agent begins. The order in which the agents perform the EPS is 
randomized, which is one of the beneficial extensions of the EPS.  

 
ATMOSPHERIC STABILITY  

The atmospheric boundary layer, the portion of the atmosphere 
that is closest to the earth’s surface and the region in which wind 
turbines are located, has physical attributes (temperature, wind 
direction, humidity, etc.) that can vary dramatically across the 
vertical range of a farm site.  The stability of the atmospheric 
boundary layer is determined by the effects of temperature on airflow 
caused by the sun, cycling through the various stability conditions 
based on the time of day. Stable conditions occur when the 
temperature increases with height, often at night [26]. In the daytime, 
however, heat from the sun warms the ground and subsequently the 
air near the ground, creating an unstable atmospheric condition (the 
air is warmed from the ground up, causing warmer air to be situated 
below cooler air).  This behavior creates significant atmospheric 
mixing that change the wind velocity and temperature gradients.  
Neutral stability conditions occur during the transition periods 
between stable and unstable. 

The potential high turbulence in unstable conditions can cause 
rotor fatigue and early turbine failure [27]. Stable atmospheric 
conditions have the highest wind shear, and, depending on wind 
speed and turbine geometry, may prove to either increase or decrease 
the rotor-averaged effective wind speed [28].  

Frandsen et al. [29] proposed that the effects of changes in 
atmospheric stability can greatly impact wind farm performance, 
including altering wind speed and turbulence. Work by Irwin [30], 
Hanafusa et al. [31], and Zoumakis et al. [32] explored how 
atmospheric stability and surface roughness affect the wind profile 
power-law exponent. Sumner and Masson [33] concluded that 
improper accounting for atmospheric stability using point estimations 
of the wind accounts for a 5% overestimation of the wind capacity of 
a site. Wharton and Lundquist [28] explored the errors that occur 
when only the power law is considered for determining the wind 
speed variation across a rotor swept area. These researchers used 
SODAR and cup anemometer measurements to define how the shape 
of the power law profile changes with atmospheric stability based on 
season.  

As the secondary EPS allows for the optimization of both rotor 
radius and hub height, it is important to estimate the changes in wind 
speed based on distance from the ground. A rotor that is positioned at 
a higher hub height will generally see higher wind speeds, based on 

the influence of the boundary layer fluid flow, which is known as 
vertical wind shear and is represented by the power law: 
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where U(Z) is the wind speed at hub height z, U(Zr) is the wind speed at 
a reference hub height zr. The power law exponent αh varies with time 
of day, season, mixing parameters and other factors. 

In the current work, atmospheric stability is accounted for by 
averaging yearly wind shear exponent data from the Lamar Low-
Level Jet Program (LLLJP) [34]. The wind shear exponent variation 
with height and month of the year is shown in Fig. 2. 

 

 
Fig. 2: WIND SHEAR EXPONENT BY MONTH [34] 

In Fig. 2, the value αh is the wind shear (or power law) exponent, 
where αh = 0 implies no shear across the rotor swept area and αh = 0.3 
represents a very large shear. The average value for heights of 3 
meters to 113m over the entire year is αh = 0.15567. There is no clear 
relationship determining whether low or high shear flow is optimal 
for turbine power development; rather it must also be dependent on 
wind speed, turbine geometry, and farm location. 

 In this work, we explore three optimal layouts for each of two 
wind cases: one layout using an average yearly power law exponent 
based on wind data from the LLLJP site given in Fig. 2 (αh = 
0.15567), one layout using a low power law exponent (αh = 0.1) 
corresponding to unstable atmospheric stability conditions, and one 
layout using a higher power law exponent (αh = 0.2) corresponding to 
stable atmospheric stability conditions. Traditionally, a constant 
power law exponent value of αh = 0.14 is used, derived from flow 
over flat plates [35]. These results will explore how the change in the 
wind shear profile shape affects the resulting layout and turbine 
geometry optimization, and offer insight into the effects of using 
more site-accurate power law profile exponents instead of the 
traditional value of 0.14. 

 
MODELING 

A) Wake Modeling 
In order to determine the amount of power a turbine is capable 

of developing, a 3-D extrapolation of the PARK wake model is used 
[7]. This wake model is a simplification of the complex 
aerodynamics involved with the motion of turbine blades rotating 
through air. This rotation causes a wake – an assumed conical-shaped 
area of air in which the flow is severely decremented immediately 
behind the rotor, but regains strength and asymptotically approaches 
the ambient wind speed downstream.  This wake is modeled as 
triangular footprint in two dimensions, with both the width of the 
wake and the wind speed deficit being proportional to the distance 
downstream from the rotor, as illustrated in Fig. 3 and described by 
the momentum balance in Eq. (2):                   
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Fig. 3: DEPICTION OF (X,Y) TRIANGULAR WAKE 

 
In Eq. 1, U0 is the ambient wind speed, rr is the radius of the 

turbine rotor, r1 is the radial width of the wake at distance x 
downstream from the turbine, v is the severely decremented velocity 
directly behind the turbine (approximately 1/3 of the ambient wind 
speed), and U is the wind speed within the wake at distance 
downstream. U is a decremented representation of U0 and is 
abstracted to be constant across the width of the wake (for the same 
value of y). The formula for U, the downstream wind speed within 
the wake, is given by: 
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Equation 3 is used to determine the effective wind speed for any 

turbine that lies within one wake, where α is the entrainment 
constant, based on the turbine hub height z and the surface roughness 
z0: 
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ln z z
   .                                  (4) 

  A turbine that does not lie within a wake of an upstream turbine 
has an effective wind speed equal to the ambient wind speed 
approaching the farm. In the case of a turbine located in multiple 
wakes, it is necessary to sum the individual kinetic energy deficits of 
each of the n wakes to calculate the effective wind speed, as given 
by: 
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In order to facilitate a more efficient search, a rectangular 
neighborhood in (x,y) is developed for each turbine to locate 
downstream turbines, using Eq. 4 to estimate the width of the wake. 
This equation relates the width of the wake to its downstream 
distance from the wake-producing turbine, based on the rotor radius: 

 

                                          
1 rr r y  .                                            (6) 

 
Using the outermost points along the rotor swept area, a turbine 

will discern whether or not it is in the (x,y) rectangular neighborhood 
of an upstream turbine’s wake, followed by a systematic approach to 
determine if the turbine lies within the frustum-shaped wake of the 
upstream turbine based on the 3-D extrapolation of the PARK model. 
The 3-D wake is depicted in Fig. 4. 

Once turbine neighborhoods are established, an (x,z) view of 
each rotor is explored to determine the percentage of the rotor swept 
area that lies within each wake. Three distinct partial wake 

interaction scenarios are considered. The first is a turbine rotor that is 
partially located within the wake of one upstream turbine, or two 
upstream turbines whose wakes do not overlap across the rotor swept 
area. These scenarios are depicted in Fig. 5. 

 
Fig. 4: 3-D FRUSTUM-SHAPED WAKE 

 
Fig. 5: TURBINE WITH PARTIAL WAKE INTERACTION, (A) 

WITH ONE PARTIAL WAKE, (B) WITH TWO DISTINCT 
PARTIAL WAKES 

In either of the cases depicted in Fig. 5, the search algorithm 
determines if the turbine rotor has a partially interacting wake by 
calculating the distance between the hub of the turbine in question 
and the centerline of the wake:   

 

   
2 2

r w t w t wd x x z z       ,               (7) 

where xt and zt are the x- and z-coordinates of the turbine hub, and xw 
and zw are the x- and z-coordinates of the centerline of wake at 
downstream distance y. Using Eq. (6), the radius of the wake rw at the 
given downstream distance y can be calculated.  Partial wake 
interaction can be verified using the following statements: 
 

   Wake does not act on rotor swept area.

     Wake acts on portion of rotor swept area.

r w r w

r w r w

d r r
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            (8) 

For the case of multiple distinct partial wakes, this check must 
be repeated to ensure that the wakes themselves do not overlap across 
the rotor swept area, and that they are in fact acting individually. 
Once partial wake interaction is verified, the formula for circle-circle 
intersection is used to calculate the area of the partial wake: 
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With the area of the acting wake(s), one can determine the 
percentage of the rotor swept area that is affected by the wake(s): 

2
%

Overlap

r

A

r
 .                                       (10) 

 
With this percentage calculated, the effective wind speed is then 

determined for the areas that are affected by a wake or wakes using 
Eq. 3, and the effective wind speed is multiplied by the percentage(s) 
of overlap. The remaining portion of the rotor swept area is 
multiplied by the ambient wind speed, and these values are summed 
to determine the total estimated effective wind speed for the turbine. 

The second wake scenario is that of a turbine that is in two or 
more wakes that overlap across the rotor swept area, as depicted in 
Fig. 6. 

 
Fig. 6: TURBINE WITH OVERLAPPING PARTIAL WAKE 
INTERACTION, (A) WITH TWO WAKES, AND (B) WITH 

THREE WAKES 

The percentage of wake overlap as depicted in Fig. 6 is not 
trivial to calculate, and as such determining the areas of overlap are 
avoided by applying a discretized mesh on the rotor swept area. The 
discretization shown is one of 49 points, which represent an evenly-
spaced grid with a coarseness of ¼ of a rotor radius, as shown in Fig. 
7:  

 
Fig. 7: DISCRETIZED ROTOR SWEPT AREA 

At each of the discretized points, the effective wind speed can be 
calculated directly, by determining whether the point lies within an 
upstream wake or wakes.  This is depicted in Fig. 8, where the point 
(xi, zi) is on the rotor swept area, and (xw, zw) are the coordinates of 
the centerline of a wake. 

 
Fig. 8: POINT (xi,zi) WITHIN THE CIRCULAR CROSS-

SECTIONAL AREA OF A WAKE 

In Fig. 8, a1 and a2 are the chords of the circular wake cross-section 
that correspond to the x and z coordinates of the discrete point, h1 and 
h2 are the heights of the arced portion of the chord areas, and rt1 and 
rt2 are the heights of the triangular portion of the chord areas. rt1 and 
rt2 are simply the differences between the x- and z- coordinates of the 
discrete point and the centerline of the wake. It can be determined 
that: 

                          
1 1 2 2   and   w t w th r r h r r    ,                     (11) 

                 1 1 1 2 2 22 2    and   2 2w wa h r h a h r h    .        (12) 

With the heights and chord lengths calculated using Eq. (11) and Eq. 
(12), the following check will determine whether or not the discrete 
point lies within the wake: 

   1 1 2 2   and   x
2 2 2 2

w i w w i w

a a a a
z z z x x        .       (13) 

If both of the statements in Eq. (13) are true, then the discrete point of 
the rotor swept area lies within the wake of the upstream turbine in 
question. This process is repeated for each of the 49 discrete points, 
and the effective wind speed is calculated based on the distance from, 
and the effective wind speed at, the upstream turbine(s) for each point 
(Eq.(2)). Each point then contributes 1/49th of the total effective wind 
speed for the turbine.  

An uncommon but nonetheless possible type of partial wake 
interaction is the case when the entire circular cross-sectional area of 
a wake lies within the rotor swept area, as depicted in Fig. 9. 

 
Fig. 9: TURBINE ROTOR SWEPT AREA WITH FULLY 

ENCLOSED WAKE 

This type of partial wake interaction is unlikely due to wake 
propagation – as a wake travels downstream, its cross-sectional area 
becomes larger than its rotor swept area. This instance involves the 
cross-sectional area of the wake being smaller than the rotor swept 
area of a downstream turbine. To calculate the percentage of overlap 
for this case, the cross-sectional area of the wake is divided by the 
rotor swept area of the turbine, and the effective wind speed within 
the wake (calculated using Eq. (3)) is multiplied by that percentage. 
The remaining contribution to the turbine’s effective wind speed is 
the remaining percentage multiplied by the ambient wind speed. 

It should be noted that the use of this wake model suggests 
inherent simplification of the results, as the model itself uses an 
idealized semblance of the wake profile and behavior [36]. In 
particular, the wind speeds within a wake are considered constant 
across the width of the wake for a given downstream distance, 
whereas the lines of constant wind speed taking on the shape of a 
Gaussian distribution would be more accurate. Similarly, there is an 
“on/off” characteristic of the wake boundary that belies the more 
realistic wind speed gradient at the edges. Additionally, this model 
cannot account for the complex turbulent flow directly behind and 
caused by the rotor blades, and as such the wake effects of the near-
wake region are unrealistic. However, given the minimum proximity 
constraint between turbines, this shortcoming most likely does not 
significantly affect the optimization. Regardless of these 
simplifications, the use of 3-D wake modeling improves upon 
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previous wind farm optimization approaches that only utilize a 2-D 
representation of the wake and only consider turbines as point 
coordinates. 

 

B) Power Modeling 
Accurately reflecting the power production of a hypothetical 

wind farm is imperative in order to validate the results of a wind farm 
layout optimization. The current work uses power modeling that 
accounts for turbines of varying geometries, and as such employs 
power modeling given by Manwell et al. [35]: 

 

31
  

2
PP AU C ,                                 (14) 

where ρ is the density of air (considered constant at 1.225 
kg/m3), A is the cross-sectional area swept by the rotor blades, U is 
the effective wind speed, and Cp is the power coefficient (which is 
relevant in the cubic region of the power curve shown in Fig. 10). 
The total power development of the farm is taken as the sum of the 
individual power outputs of each turbine. Additionally, we employed 
a power curve to more realistically represent the capability for 
turbines to develop power. When the wind speed is above the rated 
wind speed of 11.5 m/s, the turbine will only produce the amount of 
power it would at 11.5 m/s. The turbine will not produce power at 
wind speeds below the cut-in speed of 3 m/s, as shown in Fig. 10.  

 

 
Fig. 10: POWER CURVE: POWER (kW) VERSUS WIND 

SPEED (m/s) 

 It should be noted that this algorithm deliberately allows for the 
selection of turbine geometries on a semi-continuous scale; that is, 
the search only allows for discrete values to be selected, but a very 
small terminating step size enables virtually any discrete value to be 
chosen. Turbine manufacturers, however, generally produce turbine 
families that use a set of available geometries, and are not as widely 
variable as those used in this study. The hub heights and rotor 
diameters in this work are constrained such that infeasible 
combinations of these parameters are impossible. 

C) Cost Modeling 
Accurately estimating the cost of installation of an onshore wind 

farm is a complex task that requires the consideration of a large 
number of variables. Clear contributors to cost include the materials 
and manufacturing for each individual turbine, land lease costs, 
infrastructure and electrical connectivity costs, but these are only a 
few of many. The National Renewable Energy Laboratory (NREL), 
sought to develop a means to estimate the costs associated with 
installation and operation and maintenance of both on and offshore 
wind farms, with projection capability for turbines of varying sizes 
and future installations [3]. NREL created a freely-available 
spreadsheet tool as part of the Jobs and Economic Development 

Impact (JEDI) model for wind power that predicts the cost of turbines 
based on a series of parameters that are user-configurable but default 
to researched values. Though the JEDI tool is not intended to predict 
the actual price of turbines (as that is a factor of the market and is 
highly variable), we use this work as a means to estimate the cost of 
the individual turbines on the farm such that the global objective 
function can minimize installation costs. 

The JEDI model parameters vary based on U.S. state, and for 
our purposes have selected to locate our EPS-developed wind farms 
in Colorado (the LLLJP wind shear exponent data is also from data 
collection towers in Colorado). The year of construction is 2010, and 
the total project size is limited to the size of individual turbines. For 
the coupled input data of rotor radii (between 19 m and 56 m) and the 
effective wind speed compensated for hub height using the power law 
of Eq. (3) (between 38 m and 138 m), the power is developed using 
Eq. (14). These resulting calculated power evaluations are then used 
as input into the JEDI model for an individual turbine. The project 
cost results (the cost of installation) are used to create a cost 2nd-order 
polynomial surface that is dependent on rotor radius and hub height, 
as shown in Fig. 11. 

 

 
Fig. 11: POLYNOMIAL COST SURFACE AS A FUNCTION 

OF ROTOR RADIUS AND HUB HEIGHT: αh = 0.15567 

The cost surface depicted in Fig. 11 is estimated by the Eq. (15): 
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It should be noted that the polynomial cost surface is dependent 
on an input power, and is therefore dependent on the value of the 
power law exponent αh. The formula stated in Eq. (15) pertains to the 
αh value of 0.15567. These cost surfaces were developed by plotting 
168 resulting cost points via a second-order polynomial surface fit. 
Compared to the cost modeling used in previous work [5,6] which 
was based solely on the number of turbines in each potential farm 
installation, the use of the NREL JEDI-derived cost surface is much 
more realistic and accurate. 

The total project cost of the farm is taken as the sum of the 
project costs of each individual turbine as calculated by Eq. (15). The 
total power development of the farm is the sum of the individual 
turbine power outputs, as calculated in Eq. (14). With these two 
values, a global objective function was developed in order to 
accurately portray the interests of farm developers and researchers. 
This objective is the maximization of profit in dollars, formulated as 
the minimization of negative profit: 

 

Project &O M Yearly FObjective Cost Cost t Energy t C COE       ,   (16) 
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where CostO&M is the annual operations and maintenance cost of the 
farm in $/year, t is the amount of time (years) over which the cost is 
relevant, CF is the capacity factor at which the farm performs, and 
COE is the cost of energy – the price at which a farm owner may sell 
the energy their farm develops, in $/kWh. The operations and 
maintenance costs are estimated to be [3]: 
 

              
& 0.007O M Yearly FCost Energy t C COE     .            (17) 

The costs included are the initial project cost, which is generated 
by the cost surface given in Eq. (15), and the operations and 
maintenance costs per year, which are a function of the annual energy 
production of the farm. The annual energy production is the amount 
of power the farm can produce per year. The annual energy 
production multiplied by the price at which the power can be sold in 
$/kWh gives the amount of money the farm can make.   

 
NUMERICAL PROCEDURE 

Two test cases are explored in this work. First, Case (a) is that of 
constant wind speed and unidirectional wind (from the bottom of the 
field in the +y direction). Case (b) is a more accurate representation 
of wind site conditions, with three wind speeds (6, 9, and 12 m/s) and 
thirty-six wind directions (360° in 10° increments), with a probability 
of occurrence for each, depicted as a bar graph in Fig. 12. 

 

 
Fig. 12: FRACTION OF OCCURRENCE FOR WIND SPEEDS 

AND WIND DIRECTIONS – CASE (b) 

The farm site is 2000 m x 2000 m with no topographical 
variance. The turbine geometry is initialized to an 80 m hub height 
with an 80 m rotor diameter. The multi-agent system performs over a 
continuous solution space, and as such every potential agent move 
first performs an interference check to ensure that it is not within 200 
m radially of any other agent. Additionally, no agent is permitted to 
move itself out of the bounds of the farm area. After a random initial 
placement, each agent identifies any turbines that may lie upstream 
using a neighborhood search, and the distance to any potential 
upstream turbines. A check is performed to validate whether an agent 
lies in the wake of its potential upstream turbines, and the severity of 
the wake overlap. The agent then stores this information in order to 
calculate its own effective wind speed and power development. The 
initial step size of the coordinate EPS is chosen is 400 m and is 
halved until reaching a minimum value of 6.25 m. The sub-level Hub 
Height EPS algorithm uses an initial step size of 45 m, and is halved 
until reaching a minimum value of 1.4 m. The sub-level Rotor Radius 
EPS algorithm uses an initial step size of 25 m, and is halved until 
reaching a minimum value of 1.5 m. Feasible hub height values are 
between 38 m and 135 m, and feasible rotor radii are between 19 m 
and 67 m. The popping algorithm will attempt to relocate the 10 
worst-performing turbines up to 100 random locations. A constant 

capacity factor of 0.4 is used [37], and cost of energy is taken to be 
0.1 $/kWh [8]. 

RESULTS  
For both the simplified wind case (Case (a)) and the more 

realistic multidirectional wind case with varying wind speeds (Case 
(b)), the averaged value of αh = 0.15567 is compared to a lower value 
(αh = 0.1) and a higher value (αh = 0.2). These low and high values 
are similar to the minimum and maximum wind shear exponents 
gathered from wind data in Fig. 2, and will reveal more detail about 
how the changes in the wind shear exponent can affect the optimal 
layout and turbine geometry of a proposed wind farm site. 

A preliminary parametric optimization was conducted in order 
to determine the optimal number of years over which the objective 
should be considered. For the averaged αh value and 20 turbines, 
layouts were created using the profit objective for various numbers of 
years. The results of this study are summarized in Table 1. 

 
Table 1: YEAR PARAMETRIC STUDY, αh = 0.15567,  

20 TURBINES 

 
  
As this objective minimizes the negative profit, the farm costs 

are recouped and a profit is made (only applicable with the 
parameters presented) if the optimization is considered for at least 16 
years. This estimation neglects many real-world factors that would 
significantly drive down the number of years until a farm is 
profitable, such as governmental incentives for renewable energy 
production and price negotiation from turbine manufacturers, which 
are not modeled in this work. It is interesting to note the differences 
in selected turbine geometry if the years over which the optimization 
is considered are increased – the longer the farm is expected to be 
producing power, the larger the turbine geometry the optimization 
selects. The optimization must be given enough time to recoup the 
higher project cost of larger turbines in order to consider using them. 
As a result of this parametric optimization, subsequent use of the 
profit objective will be considered over 20 years. 

 
Case (a) 
Evaluating the objective for the unidirectional, constant wind 

speed case, the ambient wind speed is taken to be 10 m/s, and the 
wind approaches the site in the +y direction (from the bottom of the 
figure, upward). Using this simplified wind case helps explore the 
capability of the algorithm, and gives a clearer discernment of how 
the attributes of the search affect the result. For each value of αh, 
resulting layout data were generated for layouts of 5-50 turbines.  The 
objective function evaluation data were then plotted versus the 
number of turbines, and a cubic polynomial fit was applied; the 
minimum value for each curve is taken to be the optimal number of 
turbines for each αh value (similar to the procedure performed in 
previous EPS work [2]). This gave an optimal value of 38 turbines 
for the αh = 0.1 case, 36 turbines for the αh = 0.15567 case, and 31 
turbines for the αh = 0.2 case. These three layouts are shown in Fig. 
14, Fig. 15, and Fig. 16, respectively, with a key to aid in 
interpretation of turbine geometry given in Fig. 13 (these symbols 
indicate ranges but each turbine’s geometry is exact). Table 2 shows 
a comparison between the Case (a) results for αh = 0.1, αh = 0.15567, 
and αh = 0.2. 
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Table 2 : CASE (a) RESULTS 

 
 

 
Fig. 13: KEY FOR CASE (a) FIGURES 

 

 
Fig. 14: CASE (a), αh = 0.1, 38 TURBINE LAYOUT 

 
Fig. 15: CASE (a), αh = 0.15567, 36 TURBINE LAYOUT 

 
Fig. 16: CASE (a), αh = 0.2, 31 TURBINE LAYOUT 

These results show some interesting differences between the 
varying values of αh. The lower αh value influences an optimal layout 
with a greater number of turbines, but these turbines are generally 
smaller. The highest αh value of 0.2 gives a layout with fewer 
turbines, but of significantly taller average turbine geometry. These 
results are consistent with our understanding of how the wind shear 
exponent influences the breadth of wind speeds. The ambient wind 
speed (10 m/s) is lower than, but close to the reference wind speed 
(11.5 m/s) for the power law calculation given in Eq. (1). This was 
deliberate to explore the incentive for turbines to increase their height 
or the size of their rotor swept areas, as doing so can result in an 
increase in power development, but will increase cost, potentially 
leading to an inferior objective evaluation. For all of the αh values 
shown here, the largest possible turbine geometries were situated in 
the front of the field, with unobstructed ambient wind, where 
downstream turbines would select generally smaller geometries or 
taller hub heights to steer clear of an upstream wake or wakes. It must 
also be considered that turbine agents have selected relatively small 
turbine geometries due to the trade-off between cost and size. This 
also indicates the influence of including partial wake interaction – the 
smaller the rotor swept area, the less likely a turbine will produce a 
wake large enough to encompass others, and the less likely it will be 
located within a wake itself.  

. 
Case (b) 
As with Case (a), the Case (b) results are summarized in Table 

3, with αh = 0.1, αh = 0.15567, and αh = 0.2 now used within the 
multidirectional variable wind speed case. These three layouts are 
shown in Fig. 17, Fig. 18, Fig. 19, respectively, with a turbine 
geometry symbol key given in Fig. 20. 

 
Table 3: CASE (b) RESULTS 
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Fig. 17: CASE (b), αh = 0.1, 8 TURBINE LAYOUT 

 
Fig. 18: CASE (b), αh = 0.15567, 9 TURBINE LAYOUT 

 
Fig. 19: CASE (b), αh = 0.2, 8 TURBINE LAYOUT 

 
Fig. 20: KEY FOR CASE (b) FIGURES 

 The results for the multi-directional, varying wind speed case 
show consistency with previous work [2] in that the turbine agents, as 
the full rotation of wind directions doesn’t enable movement outside 
of wakes, tend to be fewer in number, maximize their downstream 
distance, and migrate toward the outer field perimeter. Therefore, the 
decremented wind speed behind a rotor is given the distance needed 
to recover and approach its ambient speed. Unlike Case (a), there is 
no marked difference between the number of turbines stated in each 
optimal layout, though a clear pattern of optimal turbine geometries 
emerges. As with Case (a), the higher αh = 0.2 value suggests larger 
turbine geometries, and the smaller αh = 0.1 value influences a layout 
of smaller turbine geometries. This is due to the effect of the wind 
shear exponent on the wind shear profile shape – the larger exponent 
creates a more severe profile curve, with lower wind speeds at the 
ground and higher wind speeds at the top of the profile. The larger 
turbine geometries better capture this higher wind speed, and the 
higher resulting power development counteracts the higher cost of the 
larger geometry in the profit objective. 

 

CONCLUDING DISCUSSION 
The use of this advanced multi-level EPS algorithm builds on 

the previous wind farm layout optimization by incorporating more 
realistic variables and modeling in order to yield real-world 
applicable results.  Enabling the optimization to select varying 
turbine geometries allows for a broader selection of possible layout 
designs and facilitates energy capture. In addition, this work shows 
the previously unexplored implications of realistic power and cost 
modeling on turbine size selection. The use of more accurate cost 
modeling has indicated the strong dependence of the objective on 
cost, where slight increases in turbine size can create scenarios where 
cost is no longer offset by the amount of power that is produced. 
Power modeling that accounts for changes in turbine geometry by 
incorporating the wind speed dependence on elevation are key to 
exploring farms not only of varying turbine geometries, but also of 
topographical variation. Additionally, it has been shown here that 
even slight variations in the power law exponent αh can influence 
significant changes in proposed layouts and turbine geometry. This 
stresses the importance of undertaking exhaustive preliminary wind 
site testing in order to accurately capture wind shear behavior. We 
have also shown the impact of accounting for the productive life of 
the farm when using profit as an objective, as larger, more costly 
turbines are ideal if their initial investment cost is offset by 
significant productive time. The multi-level EPS algorithm built on a 
multi-agent system framework has proven to be highly effective for 
solving the wind farm layout optimization problem, delivering 
meaningful layouts that allow for adaptive turbine geometry. 
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