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ABSTRACT
Expanding on previous work of automating functional mod-

eling, we have developed a more informed automation approach
by assigning a weighted confidence metric to the wide variety
of data in a design repository. Our work focuses on automating
what we call linear functional chains, which are a component-
based section of a full functional model. We mine the Design
Repository to find correlations between component and func-
tion and flow. The automation algorithm we developed orga-
nizes these connections by component-function-flow frequency
(CFF frequency), thus allowing the creation of linear functional
chains. In previous work, we found that CFF frequency is the
best metric in formulating the linear functional chain for an in-
dividual component; however, we found that this metric did not
account for prevalence and consistency in the Design Repository
data. To better understand our data, we developed a new metric,
which we refer to as weighted confidence, to provide insight on
the fidelity of the data, calculated by taking the harmonic mean
of two metrics we extracted from our data, prevalence, and con-
sistency. This method could be applied to any dataset with a
wide range of individual occurrences. The contribution of this
research is not to replace CFF frequency as a method of find-
ing the most likely component-function-flow correlations but to

∗Corresponding author.

improve the reliability of the automation results by providing ad-
ditional information from the weighted confidence metric. Im-
proving these automation results, allows us to further our ul-
timate objective of this research, which is to enable designers
to automatically generate functional models for a product given
constituent components.

1 INTRODUCTION
The data stored in design repositories is useful to designers

during the concept generation phase, particularly for design ac-
tivities such as generating functional models. The Design Repos-
itory 1, unique in the depth and breadth of information and ab-
straction, is a product database where data can be searched and
retrieved at different levels of abstraction including the functions
and flows associated with the constituent components of each
product [1]. However, our previous research with the Design
Repository discovered that there are outliers in the product func-
tion data that are either inconsistent or rare in occurrence. We
developed a metric to consider the fidelity of this data and allow
designers to retrieve the data still, yet be aware of the fact that

1The Design Repository is a database of design information. It is cur-
rently housed at Oregon State University. A basic web interface is available at
ftest.mime.oregonstate.edu/repo/browse
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the data may be an anomaly. Frequently outliers in data are dis-
carded or not included in the analysis by the researchers in order
to reduce noise. However, in the concept generation process, de-
signers may receive valuable creative insight from these unlikely
results.

The concept generation phase of the design process is an
area where the most creativity and innovation occur [2]. This
early design phase is where the least cost for changes occurs, so
there is significant research on tools and tactics to improve the
concept generation phase and how to improve the efficiency of
the process. There are multiple tools that product designers use
during this phase to help guide the creative process towards a
viable concept. One of these tools is deriving the functionality
of the product through a functional decomposition, graphically
represented by a functional model [3,4]. Consistency and unifor-
mity are built into the process with the widely accepted use of the
Functional Basis and Component Basis terms [5–7]. However,
even with consistency built into the process, functional models
can vary widely by the individual user input [8]. Additionally,
functional modeling if often overlooked or omitted from concept
generation because designers have a difficult time considering
design in terms of the functionality of the product. Rather de-
signers are more comfortable with component-based solutions,
often benchmarking existing products [9]. However, research has
shown that concept generation is more robust when the function
is considered [3]. Incorporating functional modeling early into
the design phase can help the shift of resources in the project
lifecycle to earlier in the design process when the cost of making
changes is low, but the impact of those changes is high.

With the knowledge of the importance of incorporating
functional decomposition into the early design phase, we have
focused our research on how to improve the process of devel-
oping functional models with the use of existing product func-
tionality data from the Design Repository. Using the existing
connections between component function and flow from the De-
sign Repository, we are mining data to work towards automat-
ing functional modeling. Our research team’s reasoning for au-
tomating functional modeling is three-fold, increasing the use
and comprehension of functional modeling, improving the De-
sign Repository by expanding the data and streamlining the pro-
cess of adding products, and connecting components to function
and flow to allow for the inclusion of function in component-
based design.

We are building on our research team’s previous work to-
wards the automation of functional modeling and the expansion
of the Design Repository. Utilizing the information in the Design
Repository, this work is centralized around finding the correla-
tions between components and function and flow or CFF com-
binations. While this work will be described more in-depth in
the Background section, a brief introduction follows here.

We begin by expanding the Form Follows Form approach,
which is based on the concept that designers most often think

in terms of components rather than function when working in
the concept generation phase [10]. Bohm et al. calculated the
CFF frequency of the function and flows correlated with each
component separately. We first used the Apriori algorithm to
find the combined associations between component and function-
flow using a subset of the consumer products data, applying a
threshold to determine the most likely functions and flows per
component [11]. During data analysis, we found that some of
the metrics of association rules were unnecessary. The team then
simplified our calculations, focusing on the CFF frequency of
CFF combinations, which is numerically equivalent to the confi-
dence metric from association rules [12]. We developed an au-
tomation algorithm, referred to as the Automated Frequency Cal-
culation and Thresholding Algorithm or AFCT, that returned the
CFF frequency of the component-function-flow (CFF) combina-
tions and applied a threshold the returned only the top 70% of
functions and flows per component. We validated the accuracy
of our algorithm on multiple subsets of the consumer product
dataset, finding that increasing the size of the dataset for data
mining increases the accuracy of our automation algorithm [12].
Restricting the dataset essentially reduced the size of the results
from which the algorithm could learn. The limitation of our cur-
rent automation process is that prevalence, the measure of the
commonness of the component, and consistency, the measure of
how uniform the CFF combinations are per component, are not
considered, which we refer to broadly as data fidelity.

The weighted confidence metric replaces a common ap-
proach of removing rare data; instead, our metric allows all data
to be included by describing the data fidelity. We were unable to
find a numerical tool or quantification that returned the synthesis
of prevalence and consistency in our dataset, so we developed
our own metric. Here we create a metric to account for preva-
lence and consistency that will be a better measure of confidence
in the automation results than simple CFF frequency.

Our immediate research objectives are to 1) mine the De-
sign Repository for the consumer product dataset, 2) apply the
automation algorithm to calculate the frequencies of CFF combi-
nations and apply the classification threshold, 3) develop a metric
that would give more confidence in the automated results of our
algorithm, and 4) test our methodology by developing example
linear functional chains.

2 BACKGROUND
2.1 Automated Frequency Calculation and Thresh-

olding (AFCT) Algorithm
The Design Repository is the ongoing result of decades of

repository research and is comprised of 142 consumer-based
electro-mechanical products housed online through the Design
Engineering Lab at Oregon State University [1, 13–16]. Each
product is divided into seven main categories of design informa-
tion: artifact, function, failure, physical, performance, sensory,
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and media-related information types [17]. A visual reference of
the data schema (i.e., the connections between data) is shown in
Figure 1. These different levels of abstraction to help improve
design knowledge and data-driven design decisions [1]. We de-
fine data-driven design as methodologies for extracting informa-
tion and insights from data and existing research to improve de-
sign processes [18].

Our data-driven design approach focuses on a specific con-
nection, the component-function-flow combination (CFF com-
bination), by extracting the connection from the data in the De-
sign Repository. In Figure 1, the letter B denotes the compo-
nent basis type and function flow connection, and the letter A
denotes the larger component-function-flow structure. The term
artifact refers to the common component name, where the com-
ponent basis term refers to the Component Basis terms developed
by Kurtoglu et al. 2005 [15]. The function and flow utilize the
Functional Basis terms developed by Stone and Hirtz [5, 6]. The
Component and Functional Basis terms allow us to compare CFF
combinations to each other with the knowledge that there is con-
sistency in the language.

FIGURE 1: Design Repository Data Schema [17]

We pick up where the Form Follows Form (FFF) approach
left off, working to capture the underlying functionality of
the chosen components using data from the design repository
[10, 19]. In the FFF approach, Bohm et al. calculated the CFF
frequency of function and flow associated with components sep-
arately. Our research continues to build on this concept, at-
tempting to streamline the automation process by combining the
component-function-flow association referred to as CFF combi-

nations. We chose only to consider the incoming flows to sim-
plify our analysis, as we found in analyzing our datasets that less
than 5% of the results have different inflow and outflow. Our
method is more thorough and complete investigation of the data
than previous work due to the addition of the new weighted con-
fidence metric which allows us to determine the prevalence and
consistency of the data.

We first used association rules with the Apriori algorithm to
find the CFF combinations using a small subset of the consumer
products data, applying a threshold to determine the most likely
functions and flows per component [11]. Association rules are a
type of data mining that describes the relationship between items
in item sets [20] [21]. During data analysis, we found that as-
sociation rules returned more metrics than we needed [12]. We
simplified our calculations, focusing on the frequency (CFF fre-
quency for clarity) of CFF combinations, which is numerically
equivalent to the confidence metric from association rules. CFF
frequency is calculated as the ratio of the number of times the
CFF combination occurs over the total number of CFF combina-
tions for that component. An example with the component screw,
demonstrates the ratio. The function and flow screw couple solid
occurs the most at 589 times out of a total of 647, so the CFF
frequency of the combination is 589/647 or 91%. Some CFF
combinations only occurred once in the dataset, which returns a
ratio of 1/1 or 100% CFF frequency.

Next, we determined that a threshold needed to be applied
to extract the most likely functions and flows for each compo-
nent. The Pareto Frontier motivates the 70% threshold from the
Form Follows Form method [19]. We found in our data analy-
sis that the 70% threshold is often the point where adding addi-
tional functions and flows for a component contributed a negligi-
ble change in the sum of frequencies and decreased the accuracy
of the automation results. We created an automation algorithm
to report the likely functions and flows automatically; this al-
gorithm is referred to as the Automated Frequency Calculation
and Thresholding Algorithm or AFCT. The AFCT algorithm or-
ders the CFF frequencies of the CFF combinations per compo-
nent from largest to smallest, sums the frequencies of each CFF
combination, and then applied a threshold the returned only the
top 70% of functions and flows per component. Edmonds et al.
validated the accuracy of the AFCT algorithm on multiple sub-
sets of the consumer product dataset, determining that the largest
dataset was the most accurate [12]. This finding indicates that a
restricted dataset limits the results from which the AFCT algo-
rithm could learn.

The ultimate goal of this research is utilize data from the De-
sign Repository to further the automation of functional models.
A functional model is the graphical representation of the func-
tional decomposition of a product, and an example of a Black and
Decker Dustbuster can be seen Figure 7 in the Appendix. Figure
7 demonstrates the complexity of functional models. To sim-
plify the process of automation, we begin by building individual-
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component-based linear functional chains. We have shown in
previous research that finding associations between functions and
flows, and components, allows us to build these linear functional
chains [11, 12]. Starting with a simplified model, we can work
out the issues and problems with automation rather than starting
with such complexity as a full product functional model. With
the CFF combinations returned from the AFCT algorithm, we
build linear functional chains for components.

Functional decomposition has been the subject of extensive
research [3, 4]. Some of this research involves developing gram-
mar rules to help solve the consistency issue with building func-
tional models [8, 16]. Kurfman et al. found that despite a formal
language, repeatability was a challenge among both novices and
experts [22]. These grammar rules help determine the appropri-
ate order of the functions and flows for a product while develop-
ing a functional model. We apply grammar rules to the creation
of linear functional chains.

2.2 Weighted Confidence Metric
Weighting is a commonly used tool when dealing with sta-

tistical probabilities or uncertainty [23, 24]. Based on the idea
that not all results are equal, a weight can be assigned to a prob-
ability to increase or decrease its influence on the results. In our
work, the inequality in results comes from varying frequencies
and consistencies in our data. In using our ACFT algorithm de-
scribed above, we found that CFF frequency did not account for
the prevalence or consistency of the CFF combinations in the
dataset. In other words, a CFF combination that occurred five
times could have the same CFF frequency as a CFF combination
that occurred 500 times in the dataset. Weighting these rare CFF
combinations the same as combinations with high prevalence can
create a false sense of confidence in the analysis. Additionally,
some CFF combinations only occur once, returning a CFF fre-
quency of 100%. This data is likely associated with a component
that does not often occur in products. However, data that has
low prevalence is still useful and vital to include in our automa-
tion process. We do not want to eliminate the results with low
frequency or consistency, but we want to indicate additional in-
formation about the influence that is not found in those metrics
alone. Therefore, we developed quantitative descriptors for our
data with the aim of using them to build an improved metric for
CFF frequency.

O’Halloran et al. developed a frequency weighting metric
that helps understand reliability and uncertainty in early design
phases [25]. Their work uses The Design Repository to calculate
and predict failure based on the number of occurrences. They
calculate frequency weights and apply them to a Hierarchical
Bayes model in a similar manner to the Holt-Winter method that
is used to forecast based on Exponentially Weighted Moving Av-
erages (EWMA) [26, 27]. Their overall method is the Early De-
sign Reliability Prediction Method (EDRPM), and it calculates

weights based on occurrence instead of the time series data in
EWMA [28].

Our method of calculating a weighted confidence metric is
similar to the EDRPM because it accounts for occurrence (preva-
lence) and is similar to Inverse Probability Weighting (IPW) be-
cause it accounts for rarity (consistency). We blend the two met-
rics together to give a weighted confidence factor that best rep-
resents the data in the Design Repository. We chose to use the
harmonic mean to combine prevalence and consistency to create
the weighted confidence metric because of its superior applica-
tion in using ratios [29].

3 METHODS
The purpose of this methodology is to develop a way to im-

prove the CFF frequency data fidelity, ultimately improving our
linear functional chain automation results. Below, we present the
methods in four steps: 1) retrieve consumer products data from
the Design Repository, 2) apply the CFF frequency and thresh-
olding automation algorithm, 3) develop a weighted confidence
metric, and 4) create linear functional chains.

Step 1. Retrieve Data
To test this methodology, we chose to work with the

largest dataset in the Design Repository—-the consumer prod-
ucts dataset. We previously found the consumer products dataset
is the most accurate and gives the most confidence in the au-
tomation results. In verifying the accuracy of the AFCT algo-
rithm results, we tested the algorithm on four smaller datasets,
both component-specific and a company based product portfolio.
We found that learning from the most possible products returns
the highest accuracy [12]. To extract the information needed, we
query the Design Repository for the component and function and
flow connection for the 142 consumer products.

Step 2. Apply the Automated Frequency Calculation
and Thresholding (AFCT) Algorithm

We utilize the automation frequency calculation and thresh-
olding algorithm (AFCT) developed previously to retrieve CFF
frequency and thresholding data for the consumer products
dataset [12]. Once the threshold was applied, the unique func-
tion and flows per component were reduced to a range of 1 to 22
compared to 1 to 101.

An example component can be seen in Figure 2. For the
component pulley, the CFF frequency of the first two functions
and flows sums to 63%, so the third is added to the list to reach
the 70% threshold. This brings the sum to 74% and results in
rejecting the last four results. For example, based on the results
from Figure 2, the order of the linear functional model would
be secure solid, guide solid, and transfer mechanical. We use
grammar rules and design knowledge to put the function and flow
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TABLE 1: METRICS DEVELOPED FOR WEIGHTED CONFIDENCE

Metric Measure Description

Example

Component:

Electric Wire

Example

Component:

Housing

CFF count

per component

The number of CFF combinations

per component in the dataset.
651 1257

Max CFF count

per component

The component with the max number

of CFF combinations in dataset.
1257 1257

Unique CFF

combinations

The number of unique CFF

combinations per component
39 101

Unique CFF

combinations

in Threshold

The number of unique CFF

combinations per component

within the 70% threshold of the dataset.

2 7

Prevalence

This metric accounts for the

commonness of the component

in the dataset

The ratio of the number of times a

component occurs in the dataset to

the max number of times any

component occurs in the dataset

0.51 1

Consistency

This metric determines how

uniform the CFF combinations

are per component

The ratio of the total unique CFF

combinations per component to

the unique CFF combinations in the

threshold dataset (scaled 0 to 1)

1 0.73

Weighted

Confidence

This metric describes the both

prevalence and consistency of

the CFF combination data.

The harmonic mean of prevalence

and consistency
0.68 0.85

in linear order, not the magnitude of the CFF frequency. Note
that the third and fourth results for pulley have the same CFF
frequency, the AFCT algorithm arbitrarily removes one of these
results over threshold. This limitation will be discussed in more
depth in the Assumptions and Limitations section.

Step 3. Develop a Weighted Confidence Metric
As described previously, the AFCT algorithm returns the

most likely functions and flows per component. While the re-
sults of the algorithm are invaluable for the automation process,
the CFF frequency calculation does not indicate the prevalence
or consistency of the component. For example, housing, electri-

cal cord, and screw were three components that appeared well
over 100 times in the repository. With examples like this, we can
be confident in the fidelity of AFCT algorithm results. However,
many results only occur once in our dataset, returning a 100%
CFF frequency. These rare CFF combinations have a high CFF
frequency, yet the fidelity of this result is much lower. This ex-
ample demonstrates that the magnitude of the CFF frequency is
not indicative of the fidelity of the data. To improve the fidelity
of the results of our AFCT algorithm, we developed a weighted
confidence metric to account for the data fidelity of the automa-
tion results.

In order to create the weighted confidence metric, we took
the harmonic mean of two metrics, prevalence, and consistency.
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FIGURE 2: EXAMPLE TO ILLUSTRATE THRESHOLD AUTOMATION FOR THE COMPONENT PULLEY

To reiterate, prevalence measures the commonness of the compo-
nent, and consistency measures how uniform the CFF combina-
tions are per component. These metrics are described in Table 1.
Two example components demonstrate the numbers used to cal-
culate the weighted confidence metric and are shown in Table 1.
Consistency was scaled from 1 to 0 to make it equal in magnitude
to prevalence so that the harmonic mean could be estimated. Har-
monic mean in Equation 1 is a more representative mean when
dealing with ratios rather than the arithmetic mean [29], where n
is the number of variables used to calculate the mean, in our case
n = 2 (consistency and prevalence), a1 is consistency, and a2 is
prevalence.

HarmonicMean = H =
n

1
a1
+ 1

a2
+ · · ·+ 1

an

(1)

High prevalence is demonstrated in Table 1, the component
housing occurs 1257 times in the dataset. Housing is a compo-
nent that occurs in almost all consumer products, so naturally, it
would have a high prevalence. An example of low prevalence
is analog display, which only occurs once, indicating that only
one product in the repository has this component. An example of
high consistency is shown in Table 1, electric wire has the highest
ratio of total unique CFF combinations to unique CFF combina-
tions in threshold, 39/2. Demonstrating that even though there
are 39 combinations for electric wire, only two of those com-
binations represent 70% of the results, transfer electrical (44%)
and couple solid (26%).

Step 4. Create Linear Functional Chains
We can use the likely functions and flows found by the

AFCT algorithm to develop linear functional chains. The
weighted confidence metric can be used to determine the fidelity
of the linear functional chain. We show four distinct example
components from the dataset that are representative of the four
combinations of high- and low-CFF frequency and weighted
confidence below:

1. High CFF frequency, high weighted confidence
2. Low CFF frequency, high weighted confidence
3. Low CFF frequency, low weighted confidence
4. High CFF frequency, low weighted confidence.

These categories represent the four quadrants in Table 2. As

TABLE 2: DESCRIPTION OF THE COMBINATION OF CFF
FREQUENCY AND WEIGHTED CONFIDENCE

High

Weighted

Confidence

Multiple results per

component that occur

many times.

One or two CFF results

that occur many times in

the dataset.

Low

Weighted

Confidence

Multiple results per

component that only

occur a few times.

One or Two CFF results

per component that only

occur once.

Low CFF frequency High CFF frequency
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stated above, CFF frequency alone cannot determine the preva-
lence and consistency of data. Combining the weighted confi-
dence metric with CFF frequency, as seen in Table 2, provides
additional information improving our automation process. High
CFF frequency indicates that the component has few functions
and flows associated with it, and high weighted confidence in-
dicates that the component often appears in the data and has
consistent, unique function and flows. Low CFF frequency in-
dicates that the component has many associated functions and
flows, while low weighted confidence indicates that the compo-
nent is rare in the data and is not consistent with unique function
and flows. We chose an example component from each quad-
rant to demonstrate an automated linear function chain, using the
function and flow combinations found by the CFF frequency cal-
culation and thresholding algorithm.

To form the order of the linear functional chain, if there are
more than one function and flow per component, we order the
functions and flows based on previously created grammar rules.
For example, Bohm et al. state that the import function occurs
first and only once per flow in a chain of components, and that ex-
port is the last function in a chain of components [19]. Grammar
rules do not exist for every combination of function and flow.
Currently, we are creating the linear functional chains by hand
using expert knowledge. As this research progresses, we will
develop additional grammar rules, which will help continue to
automate the process of developing functional models.

ASSUMPTIONS AND LIMITATIONS
The primary limitation in our previous work (that this re-

search seeks to eliminate) is that a CFF combination could ap-
pear a few times or several hundred times in the dataset, and
with only the CFF frequency calculation, there was not a way
to determine the difference. We make key assumptions in this
research: primarily, we assume that due to the use of the Func-
tional and Component Basis terms, the data in the Design Repos-
itory is consistent. For example, one function and flow combina-
tion that appeared for both components rivet and screw is couple
solid. This consistency allows us to compare function and flow
across components. However, we know that at times due to mul-
tiple entries from different researchers, we do need to account for
variance and error, such as the component basis terms container
and reservoir being used interchangeably. Input fidelity and lin-
guistic imprecision, such as the difference between container and
reservoir, are two concerns. This is ultimately why we chose to
develop the weighted confidence metric to help account for any
erroneous data.

While we found the 70% threshold worked for the majority
of components, some components fall outside this typical pat-
tern. For example, the components condenser and screen have an
even split of the CFF frequency across all results. This equal dis-
tribution creates a unique situation where the threshold arbitrarily

eliminates the last function and flow. Figure 8 in the Appendix
shows the AFCT algorithm results for both components. In cases
like this example and the pulley example (Figure 2), future work
is needed to optimize the threshold in the AFCT algorithm.

4 RESULTS AND DISCUSSION
4.1 Automated CFF frequency Calculation and

Thresholding (AFCT) Algorithm
The 142 products were composed of 132 different compo-

nent basis types and 161 functions and flows that were combined
to create the CFF combinations. The query and algorithm re-
turned 11,394 CFF combinations for the 142 consumer products
in the Design Repository. The range, average, and median of the
different CFF combinations can be seen in Table 3.

4.2 Weighted Confidence Metric
The weighted confidence metric improves the automated re-

sults of the CFF frequency calculation and thresholding algo-
rithm by incorporating the prevalence and consistency of the
data. The relationship between consistency and prevalence was
not proved to be a 1-to-1 relationship for a significant portion of
the data, demonstrating the importance of including both metrics
in the weighted confidence calculation, see Figure 3 trend line.

Figure 4 shows the relationship between CFF frequency and
weighted confidence. Each point represents one CFF combina-
tion. The size of the bubble is the number of CFF combination
occurrences per component in the dataset; for example, housing
has 1257 CFF combinations (the max number of occurrences for
a component in the dataset) seen in the top left of the figure.
Figure 4 shows that the weighted confidence metric is needed to

TABLE 3: RANGE AVERAGE AND MEDIAN OF THE COM-
PONENT FUNCTION FLOW ASSOCIATIONS

Range Average Median

Total individual CFF

combinations per component
1-1257 133 55

Individual CFF combinations

per component within threshold
1-908 105 45

Total unique CFF

combinations per component
1-101 27 22

Unique CFF combinations

per component within threshold
1-22 10 9
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FIGURE 3: CONSISTENCY VERSUS PREVALENCE

improve data fidelity of CFF frequency results, as high weighted
confidence values are found across all CFF frequency values. A
low CFF frequency is not indicative of the importance of the CFF
combination; rather, it simply indicates that there are multiple
results per component. The average number of unique functions
and flows per component is 10, illustrating that most components
have multiple associated functions and flows. Figure 4 shows the
large percentage of the CFF combinations have a CFF frequency
below 40%. For example, housing, which has 7 CFF combi-
nations in threshold, resulting in low CFF frequency for each
combination. However, housing has the highest prevalence in
the dataset, resulting in a high weighted confidence value, which
is more indicative of the fidelity of the data than the CFF fre-
quency values. In Figure 5, we have partitioned the parameter
space into four quadrants to show examples of four combinations
of CFF frequency and weighted confidence values discussed in
the methods and shown in Table 2. The results demonstrate that
while CFF frequency is needed to return the likely functions and
flows per component, the magnitude of CFF frequency is not es-
sential; however, the magnitude of the weighted confidence can
indicate confidence in the automation results.

Here, we briefly describe four specific results from Figure 5.
A. Low CFF frequency, high weighted confidence The au-
tomation algorithm returned 7 CFF combinations within the
threshold for the component housing. Multiple CFF combina-
tions per component result in a lower CFF frequency per com-
bination. Housing is the component with the highest prevalence
in the dataset at 1257, and it has high consistency with a ratio
of 101 unique CFF combinations to 7 unique CFF combinations
in the threshold. Since housing has both a high prevalence and
consistency in the dataset the weighted confidence value is also
high at 85%. The top CFF combination was Housing - Position
Solid with a CFF frequency of 23%, the other 6 combinations

FIGURE 4: WEIGHTED CONFIDENCE VERSUS CFF FRE-
QUENCY WITH THE OCCURRENCE OF THE COMPO-
NENT AS THE SIZE OF THE BUBBLE

had a lower CFF frequency.
B. High CFF frequency, high weighted confidence Screw has
very high CFF frequency because within the threshold; there is
only one CFF combination, Screw - Couple Solid. This combi-
nation has a CFF frequency of 92%, meaning Couple Solid is
the most likely function and flow for the component Screw. Like
housing, screw has both a high prevalence and high consistency.
The prevalence is how often screw appears in the dataset, 647
times. Consistency is the ratio of unique CFF combinations to
unique CFF combinations within threshold, which is 18 to 1. The
weighted confidence metric is 66%.
C. Low CFF frequency, low weighted confidence Condenser-
Convert Gas is an example of a CFF combination that has low
CFF frequency but also a low weighted confidence value. The
automation algorithm returned five unique CFF combinations for
condenser, but there were only a total of six results in the Repos-
itory. The component condenser only shows up in three of the
142 products in the Repository, indicating that this a rare compo-
nent in our products. The low weighted confidence metric, 0.8%,
indicates low fidelity of the automation results.
D. High CFF frequency, low weighted confidence Analog
Display-Indicate Mechanical is an example of a CFF combina-
tion that only occurs once in the Repository. The CFF frequency
is therefore very high, 100%, but the weighted confidence is
very low, 0.15%. CFF combinations that only occur once re-
turn a false high CFF frequency that can be illuminated by the
low weighted confidence metric.
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FIGURE 5: EXAMPLE DATA FOR THE FOUR QUADRANTS
OF COMBINED WEIGHTED CONFIDENCE AND CFF FRE-
QUENCY.

4.3 Linear Functional Models
To translate our findings into automation, we developed four

linear functional chains based on our four examples above in
Figure 5. Each example component came from one of the four
quadrants shown in Table 2. The linear functional chains are a
demonstration of the automation process described in the meth-
ods. The AFCT algorithm returns the most likely functions and
flows for a component. If there is more than one function and
flow returned for a component, the results are ordered using ex-
isting grammar rules and expert knowledge. The components in
Figure 6 demonstrate that components vary in complexity and
therefore vary in functional chains. Screw, for example, has only
one function and flow, couple solid, whereas condenser has many
more functions and flows. This complexity can also be attributed
to the function the component performs in the product; for exam-
ple, a knife blade performs a more straightforward function than
a jigsaw blade.

For the linear function chains shown in Figure 6, the higher
weighted confidence metric for housing and screw indicates
higher data fidelity than the two components with lower weighted
confidence, condenser, and analog display. As seen in Figure 6
A., housing is an example of a component with multiple results;
these results need to be ordered linearly. For the flow of human
material, we apply the following grammar rules adapted from
Bohm and Stone a) import is automatically placed as the first
function for a chain and b) export is automatically placed as the
last function for a chain [19]. Currently, grammar rules do not ex-
ist to describe the order functions such as position, guide, couple,
and secure. Therefore, using our knowledge of functional mod-
els, we determined that position solid must come before guide

solid, and guide solid would come before couple solid, and cou-
ple solid would come before secure solid. The same reasoning
was applied to the component condenser, Figure6 C. As we move
toward automation, we will continue to develop grammar rules
to improve the machine learning of our process. The grammar
rules also dictate that the convert function has separate inflows
and outflows; therefore, the automation would place transfer gas
before convert gas for the component condenser seen in Figure
6.

FIGURE 6: LINEAR FUNCTIONAL CHAINS OF THE FOUR
EXAMPLES IN FIGURE 5

5 CONCLUSION
We set out to assess the prevalence and consistency of the

outlying component-function-flow combination (CFF combina-
tions) in the Design Repository data. In previous work, we
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found that CFF frequency was a suitable metric to determine a
components likely function and flow, but was unable to iden-
tify the prevalence and consistency of the components in the
dataset. Our work developed a weighted confidence metric to
supplement CFF frequency during the automation process. The
weighted confidence metric supports CFF frequency by analyz-
ing the components data fidelity, identifying the range of low to
high confidence. Figure 4 demonstrated the distribution of CFF
combinations across frequency and weighted confidence. The
range of distribution of CFF frequency is shifted towards the
lower end of the spectrum because the majority of components
in the consumer products dataset have multiple function and flow
outputs resulting in the division of CFF frequency across all in-
stances. However, the weighted confidence is distributed more
evenly across all CFF combinations, indicating that there is a
range of data fidelity in the Design Repository. Ultimately we
need both metrics in order to automate the process; the CFF fre-
quency metric returns the most likely function and flow results
for each component, and then the weighted confidence metric
accounts for prevalence and consistency in the data. With the
weighted confidence metric, we are now able to capture occur-
rences of all components in a given dataset, thus improving the
results of our automation algorithm. By including the weighted
confidence metric, we have eliminated the tendency to discard
useful outliers to reduce the noise in analysis such that these out-
liers can now be included in the concept generation process. The
inclusion of these outliers can provide valuable creative insight
to designers. We have provided a simple method that researchers
could implement with their own datasets to weight results versus
discarding outliers, ultimately increasing the robustness of data
analysis.

This methodology has helped increase the utility of auto-
mated functional modeling. However, there is still much to be
done to fully automate the process of creating complex functional
models for entire products. The next step would be to integrate
the weighted confidence metric into the AFCT algorithm, return-
ing both metrics. Future work should also look at optimizing a
threshold specific to each component, identifying where adding
additional function-flow combinations has a negligible change.
In order to broaden linear functional chains to the full functional
model, work must be done on connecting components to each
other, as well as connecting the components through flows.

One of the main goals of this research is to help expand the
Design Repository. As we develop our automation process, it be-
comes easier in the future to add information from other repos-
itories, which significantly expands our database. We are work-
ing with additional Oregon State University (OSU) researchers
to house the information from an existing Sustainable Design
Repository in the OSU Design Repository [30]. Combining this
information adds additional products, as well as sustainable de-
sign information such as Life Cycle Analysis (LCA) analysis and
manufacturing processes. Expanding on the work presented in

the Function-Human Error Design Method (FHEDM), Soria et
al. have been using Design Repository data to develop new re-
lationships, such as incorporating the user, user interactions, hu-
man error [31, 32]. The database structure of the Design reposi-
tory provides mapping and connections between categories of the
product systems, expanding these connections to include sustain-
ability and user-system interactions will bring these important
considerations to the early phase of design decisions.
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A Appendix A: Functional Model Example

FIGURE 7: BLACK AND DECKER DUSTBUSTER FUNCTIONAL MODEL
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B Appendix B: Additional Component Examples

FIGURE 8: EXAMPLE COMPONENTS TO ILLUSTRATE LIMITATIONS OF THRESHOLD AUTOMATION
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