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A B S T R A C T

It is key in the development of wave energy systems to aim at designing economically competitive solutions
that enable maximal annual energy production. Previous studies identify the Wave Energy Converter (WEC)
structure, i.e. the hull, to have one of the largest cost reduction potentials. Due to this potential, geometry
optimisation of WECs has been previously considered, however, most of these studies have been limited by the
simplicity of the employed geometrical shapes and the lack of accurate cost models. It is, therefore, important
to include an adaptable geometry definition capable of generating diverse WEC shapes, and to account for other
factors that can have an effect on costs. These considerations result in a more challenging optimisation problem,
and a more complex objective function. The goal of this study is to address the challenge of finding a suitable
and efficient optimisation method for WEC geometry design. In this paper, different geometry definitions,
such as using simple shapes or B-spline surfaces, and different meta-heuristic optimisation algorithms, such
as genetic algorithms or particle swarm optimisation are applied to this problem to find the most suitable
choices. Results show an improvement in final objective function values of up to 224% when using an adaptable
geometry definition and up to 11% when employing the most suitable optimisation algorithm compared to
previous results. In conclusion, the choice of the different elements of the optimisation formulation have a large
impact on the quality of the optimisation results and should be based on preliminary studies as presented here.
1. Introduction

High energy potential is found in ocean waves. For this reason,
many different types of Wave Energy Converters (WECs) have been
developed, with the goal of designing devices with reduced costs and
increased annual energy production. Design optimisation offers the
opportunity to explore more of the design space while avoiding ex-
pensive build and test iterations and it has been used to improve
energy efficiency of a range of commercially developed systems. It
has been applied, for example, to improve efficiency of buildings [1],
hybrid solar-wind generation plants [2], also in combination with
storage technologies [3], or Combined Cooling, Heating and Power
(CCHP) systems [4]. This type of design optimisation is particularly
relevant for emerging technologies such as wave energy converters,
where improved early stage designs have a great impact on technology
advancement towards commercialisation.

From previous studies, it is known that one of the largest cost
reduction potentials is associated with the Wave Energy Converter
(WEC) structure, i.e. the hull [5,6]. Apart from the high capital ex-
penditure associated with the device hull, the geometry of the hull
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is crucial for the device hydrodynamics, and thus for the annual en-
ergy production. The cost reduction potential and key hydrodynamic
characteristics associated to the device hull have resulted in a number
of device hull geometry optimisation studies, which not only aim at
maximising performance, but also minimising costs. A point absorber
based on simple hull shapes using cylindrical geometries was studied
by Gilloteaux et al. in [7] to understand the effect of different control
strategies on optimal device size. Kurniawan et al. optimised dumbbell-
like shapes in [8] considering their total surface area as a proxy for
costs. In [9] using a similar methodology, they optimised an oscillating
wave surge device, where the position of the axis of rotation was also
considered as an optimisation variable. Costello et al. [10] optimised a
barge-shaped device using a detailed cost model versus a maximising
energy absorption only approach. Other types of devices such as two-
body point absorbers were optimised in a multi-objective optimisation
set-up by Blanco et al. in [11]. Oscillating Water Columns (OWC) have
also been extensively studied by Weber et al. for example, in [12].
Power Take-Off (PTO) systems and the applied control strategies are
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Nomenclature

𝑏 Half beam (m)
𝑑 Draft (m)
𝑓 Objective function (NA)
𝑔 Gravitational acceleration (m/s2)
𝐶𝑎 Added damping (kg/s, (kg m)/s, or (kg

m2)/s)
𝐻𝑚0 Significant wave height (m)
𝑀𝑎 Added mass (kg, kg m, or kg m2)
MaxGen Maximum number of iterations defined for

an optimisation (NA)
𝑁𝐸𝑙𝑖𝑡𝑒 Number of elite individuals used for rein-

sertion in genetic algorithm (NA)
𝑁𝐼𝑛𝑑 Number of individuals in genetic algorithm

(NA)
𝑁𝑃𝑎𝑖𝑟 Number of pairings in genetic algorithm

(NA)
𝑁𝑃𝑎𝑟𝑒𝑛𝑡𝑠 Number of parents in genetic algorithm

(NA)
𝑃 Mean annual power (W)
𝑃𝑝𝑚 Power per metre crest length (W/m)
𝑟 Radius (m)
𝑆 Submerged surface area (m2)
𝑇𝑒 Energy period (s)
𝑉 Submerged volume (m3)
𝑣𝑛 Vertex (NA)
𝑤 Half width (m)
𝐙 Device’s intrinsic impedance matrix (kg/s,

(kg m)/s, and (kg m2)/s)
𝐙𝑐 Control impedance matrix (kg/s, (kg m)/s,

and (kg m2)/s)
𝐱 Vector of decision variables (NA)
𝜆 Wavelength (m)
𝜑 Acceleration constants in particle swarm

optimisation algorithm (NA)
𝜔𝑒 Energy frequency of the sea state (rad/s)
𝜉 Device oscillation (m)
AES Average number of Evaluations to a Solu-

tion (NA)
CW Capture Width (m)
CWR Capture Width Ratio (%)
DoF Degree of Freedom (NA)
GA Genetic Algorithm (NA)
MBF Mean Best Fitness (NA)
PSO Particle Swarm Optimisation (NA)
PTO Power Take-Off (NA)
SR Success Rate (NA)
WEC Wave Energy Converter (NA)

also known to have a large impact on system dynamics and the po-
tential for cost reduction [5]. These systems have been extensively
studied and optimised, and some studies exist which simultaneously
optimise geometry and PTO-parameters, such as the one previously
mentioned by Gilloteaux et al. [7]. Due to their potential impact on
system dynamics and structural loads mooring lines have also been
optimised, for example, in [13].

All of the above studies used geometry definitions based on simple
shapes such as cylinders, barges or ellipsoids. An approach capable of
2

generating very diverse shapes was developed by McCabe et al. using a
more complex geometry definition based on B-spline surfaces. An initial
method applied to a surging and pitching device was presented in [14].
The method was further developed and applied to a surging only device
in [15], where geometries were optimised using a single-objective
genetic algorithm. Shapes were optimised to maximise mean annual
absorbed power, and mean annual absorbed power in combination
with the submerged volume. Complex shapes with high curvatures
and thin cross-sections resulted from optimisations using submerged
volume in the objective function, which might not be cost-effective to
manufacture.

Results from previous studies are limited by the choice of geometry
definition and valid only for specific conditions. That is, resulting
shapes might just be optimal for very specific sea conditions, within
previously selected base shapes (e.g. cylinders), and for specific modes
for power extraction; and they may not be cost-effective to manu-
facture. It is, therefore, important to be able to generate a diverse
range of improved WEC designs while considering costs, in order to
explore more of the design space and identify promising solutions.
Having a more flexible and comprehensive optimisation set-up, how-
ever, makes the optimisation problem more challenging, since the
number of optimisation variables and constraints is increased, and the
objective function can become more complex and time consuming to
calculate. Ensuring convergence to a near globally optimal shape, and
achieving this within an acceptable timescale, is not trivial and requires
a thorough exploration of the optimisation algorithm.

There is a clear need for the development of a flexible and compre-
hensive method for hull geometry optimisation, due to the relevance of
design optimisation tools at early design stages, the high cost associated
with the structure and the lack of a general methodology and best
practices for WEC geometry optimisation. As previously identified by
Weber et al. in [16], this is key for the advancement of wave energy
technologies. Such a method for hull geometry optimisation represents
a fundamental design aid for technology developers, but it can also
serve funding bodies to assess different technologies, since it will build
on a methodology for design comparison.

The present paper addresses this gap by finding a suitable and
efficient optimisation method for WEC geometry optimisation. With
this purpose, the geometry definition and the choice of the optimisation
algorithm are studied. Different geometry definitions are compared: a
hemisphere, a vertical cylinder, a barge and bi-cubic B-spline surfaces.
In addition, different objective functions are considered based on the
mean annual power 𝑃 , the submerged volume 𝑉 , and the submerged
urface area 𝑆 (𝑃 , 𝑃

𝑉
1
3
, 𝑃

𝑉
2
3
, 𝑃𝑉 , 𝑃𝑆 , and 𝑃

𝑆
1
2

), for a device oscillating
in surge only, and in surge, heave and pitch. To find the most suit-
able optimisation algorithm for each case, a range of meta-heuristic
algorithms are applied to this problem, including different single-
objective Particle Swarm Optimisation (PSO) and Genetic Algorithm
(GA) implementations.

First, the general formulation of the optimisation problem is intro-
duced in Section 2.1 and some background is provided in Section 2.2
by introducing the method developed by McCabe in [14,15] capable of
generating very diverse shapes, and which serves as a starting point
for this study. The required assumptions and the verification of the
re-implemented method are briefly discussed in Sections 2.3 and 2.4,
respectively. The extensions that were used to increase its robustness
are presented in Section 2.5. The enhanced method introduced here is
used as a baseline to analyse two main elements of the optimisation
process: the optimisation algorithms and the geometry definition. The
approach and studied cases employed to investigate the most suitable
optimisation algorithm and geometry definition for wave energy con-
verter geometry optimisation are introduced in Section 3. The obtained
results are then discussed in Section 4, where first the most suitable
algorithm for each of the studied cases is identified, and then these
are applied to optimisation approaches using different geometry defi-
nitions. The main conclusions drawn from this study are presented in

Section 5.
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Fig. 1. Flow chart of the optimisation procedure, showing an overview of the studied elements. Both simple shapes and adaptable geometry definitions, as well as, Genetic
lgorithms (GA) and Particle Swarm Optimisation (PSO) algorithms are investigated in this study [17].
G
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. Methodology

In this section, the basic formulation of the optimisation problem is
ntroduced. To be able to study the suitability of geometry definition
nd optimisation algorithms for wave energy converter geometry opti-
isation, a baseline method was used. Its implementation is discussed

n this section. The method was re-implemented based on two publi-
ations [14,15]. Further considerations, not mentioned in those two
ublications, were found necessary for the correct functioning of the
ptimisation. Additionally, the original implementation was applied to
surging only device, whereas the implementation used here applies to
evices oscillating in any degree of freedom or combination of degrees
f freedom. Although this is not the focus of this paper, the main
haracteristics of this re-implemented method and an overview of the
dditionally required considerations are introduced in the following for
ontext and to facilitate reproducibility.

.1. Optimisation problem

A single objective optimisation problem is defined as a problem in
hich the optimal values for a number of decision variables 𝑥𝑖 are

searched so that an objective function 𝑓 (𝐱) is minimised or maximised.
The search space 𝛺, i.e. the full range of possible decision variable val-
ues, is constrained through bounds and non-linear constraints defining
restrictions between certain variable combinations. The solution space
𝛥 i.e. the space of feasible solutions for the studied objective function,
can be constrained by various equality 𝑔𝑗 and inequality ℎ𝑘 constraints.
This is represented mathematically below in the standard form [18].

min 𝑓 (𝐱)
objective function: 𝑓 (𝐱), for 𝑓 ∈ 𝛥
decision variable: 𝐱 = {𝑥1,… , 𝑥𝑚} ∈ 𝛺
equality constraint: 𝑔𝑗 (𝑥) = 0 for 𝑗 = 1,… , 𝑛
inequality constraint: ℎ𝑘(𝑥) ≤ 0 for 𝑘 = 1,… , 𝑜

(1)

A WEC geometry optimisation process is characterised by the way
3

the geometry is defined (including the decision variables), the objective
function(s) used to evaluate the generated geometries, and the optimi-
sation algorithms applied to select geometries and generate improved
ones. An overview of the geometry optimisation process is given in
Fig. 1. Each of the main steps represented in this figure are introduced
in the subsequent sections.

The focus of this paper is to study the suitability of different
geometry definitions and optimisation algorithms. The studied areas
are marked in Fig. 1 with dashed lines. The considered geometry
definitions comprise a hemisphere, a vertical cylinder, a barge and
bi-cubic B-spline surfaces. GA and PSO algorithms are applied to the
single-objective optimisation problem.

2.2. Re-implemented method

The method introduced by McCabe in [15] is used as a reference,
due to the ability of this method to generate very diverse shapes free
of designer bias.

Geometry definition
The WEC hull geometry is defined based on a polyhedron with an

x−z-symmetry plane. As shown in Fig. 2, the corner points are used
as vertices, between which further control points are defined through
interpolation. The surface is then approximated by bicubic B-spline
surfaces. Some of the vertices’ coordinates are fixed, since the vertices
lie on the free surface or on the symmetry plane, but the rest (22
in total) can be changed randomly within defined ranges. Note that
spherical coordinates (𝑟𝑛, 𝜃𝑛, 𝜙𝑛) are used for each vertex 𝑉𝑛.

eometry evaluation according to the objective function
In McCabe’s original implementation [15] shapes were optimised to

aximise 𝑃 , 𝑃∕𝑉 and 𝑃∕ 3
√

𝑉 . All objective functions, hence, include
the mean annual power 𝑃 , produced by the wave energy converter.
The power calculation procedure, as well as the scatter diagram for the
considered location can be found in [15]. The hydrodynamic model
and the transfer of the method in [15] to a multiple modes-of-motion
oscillating WEC is presented in [19]. An overview is provided here for
completeness. The hydrodynamic model is based on the assumptions
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Fig. 2. Geometry definition based on a polyhedron with numbered vertices 𝑉𝑛
nd vertex coordinates (𝑟𝑛, 𝜃𝑛, 𝜙𝑛). Additionally, some example representations of

interpolated points are shown in grey [17], adapted from Figure 1 in [15].

that ocean waves can be described using potential flow theory (i.e. ir-
rotational flow, and inviscid and incompressible fluid), wave heights
are small relative to the wave length, and body oscillations are also
small. This means that linear wave theory can be applied, and the
system oscillations can be described as the superposition of multiple
harmonic oscillations. Furthermore, the system is assumed to have
reached steady-state oscillatory motion. Based on these assumptions the
system can be described in the frequency domain.

The mean annual power is calculated for a particular site and
WEC geometry. The wave energy resource is represented with irregular
uni-directional waves in a fully developed sea using a Bretschneider
spectrum [20]. The algorithm is implemented in Matlab and uses
WAMIT – a frequency-domain programme based on a Boundary Ele-
ment Method (BEM) – to calculate the hydrodynamic characteristics for
each shape based on the frequencies selected to represent the spectrum.
A frequency range from 0.02 to 3 rad/s is considered. The yearly
average power is obtained with the sea states occurrence matrix. The
volume for each geometry can be obtained from WAMIT.

For power absorption, a semi-optimal linear control is used, that
brings the device’s natural frequency to match the energy frequency of
the sea state 𝜔𝑒 =

2𝜋
𝑇𝑒

calculated as in [21]. The corresponding control
force is composed of constant inertia, damping and stiffness terms,
which are defined according to [22] so that the control impedance ma-
trix 𝐙𝑐 equals the complex conjugate of the device’s intrinsic impedance
𝐙∗ at the energy period, where ∗ denotes complex conjugate. The
application of this control strategy results in an equation of motion
which is independent of the hull’s inertia and hydrostatic stiffness.

Despite using a frequency-domain hydrodynamic model, the time
series of the device oscillation and of the instantaneous power are
calculated to be able to apply stroke and PTO rating constraints. The
instantaneous power absorbed by the PTO is set to zero if the device
oscillation is outside of the predefined stroke limits, and is set to
the maximum power limit given by the PTO rating, if this rating is
exceeded. This analysis is performed for 𝑁 time steps with 𝛥𝑡 = 0.2
s and 𝑡𝑁 ≈ 2𝜋

𝛥𝜔 . This results in a non-repeating time series.
The geometry is considered to be an infeasible solution, if the final

annual power production is negative or if it exceeds the maximum
capture width 𝐶𝑊 ,𝑀𝐴𝑋 of an axisymmetric body for the available
power per metre crest length. 𝐶𝑊 ,𝑀𝐴𝑋 can be calculated for different
combinations of modes of motion according to [22]. For the surge;
and surge, heave and pitch cases studied, 𝐶𝑊 ,𝑀𝐴𝑋 equals 𝜆∕𝜋 and
3𝜆∕𝜋, respectively. 𝜆 here represents the wavelength calculated from
the energy period for each sea state. Although the bodies considered
in the present implementation are not axisymmetric, this upper bound
also serves the present case by ensuring that the calculated average
power per sea state does not surpass the theoretical limit of average
power available in the sea.
4

(

Parameter constraints
Parameter constraints common to all optimisation problems are

summarised here. PTO stroke constraints 𝜉𝑀𝐼𝑁 (𝑖) and 𝜉𝑀𝐴𝑋 (𝑖) are
pplied on each degree-of-freedom. In addition, a PTO rating 𝑃𝑃𝑇𝑂,𝑀𝐴𝑋
s enforced. The device’s submerged volume 𝑉 is constrained to avoid
he optimisation to converge into very large or very small shapes. The
ean power production is restricted by the capture width 𝐶𝑊 ,𝑀𝐴𝑋

f an axisymmetric body depending on the modes of motion and the
ower per metre crest length 𝑃𝑝𝑚 available in the considered sea state.
hese constraints are listed below and, when applicable, they were
entioned at the corresponding stage of the geometry evaluation.

𝜉𝑀𝐴𝑋 (𝑖) = 5 m; 10 m | 𝑖 = 1, 2, 3

𝜉𝑀𝐴𝑋 (𝑖) = 𝜋∕4 | 𝑖 = 4, 5, 6

𝜉𝑀𝐼𝑁 (𝑖) = −𝜉𝑀𝐴𝑋 (𝑛) | 𝑖 = 1, 2, 3, 4, 5, 6

𝑃𝑇𝑂,𝑀𝐴𝑋 = 2.5 MW; 5 MW

250 m3 ≤ 𝑉 ≤ 4000 m3

0 MW ≤ �̄� ≤ 𝐶𝑊 ,𝑀𝐴𝑋 ⋅ 𝑃𝑝𝑚

From the results in [15] it can be observed that differences in
𝑀𝐴𝑋 (𝑖) and 𝑃𝑃𝑇𝑂,𝑀𝐴𝑋 result in larger or lower mean annual power
roduction values, but do not have a significant effect on the resulting
hapes. For this reason, if not otherwise specified, 𝜉𝑀𝐴𝑋 (𝑖) = 5 m | 𝑖 =
, 2, 3 and 𝑃𝑃𝑇𝑂,𝑀𝐴𝑋 = 2.5 MW were used for the optimisation runs
erformed within this study.

ptimisation procedure
In the previously mentioned studies, both meta-heuristic optimisa-

ion methods such as genetic algorithms [8,9,14,15,23], and evolution-
ry algorithms [11] have been used. Additionally, exact methods based
n direct search approaches, such as the simplex algorithm [7] or the
imple pattern search [10] have been applied. Gomes et al. [24] apply
oth exact and meta-heuristic methods to the geometry optimisation
roblem. For problems with a reduced number of optimisation vari-
bles, as was the case in [7] and [24], exact methods might be able
o provide optimal solutions with less computational effort. However,
s the geometry definition and the objective function become more
omplex, meta-heuristic methods have a high potential to perform
etter, as they have proven to be more suitable for finding good enough
olutions for complex problems within an acceptable time scale [25].
hat is, in cases where the objective function has multiple maxima
nd minima, meta-heuristic algorithms have proven to perform a more
ffective search of the solution space and to be more likely to find
lobal optima when compared for instance to gradient-based methods.
hrough their strategic stochastic approach, meta-heuristic algorithms
re less dependent on previously analysed solutions. Additionally, in
ases where the objective function is not differentiable, for exam-
le, due to discontinuities caused by the applied constraints, gradient
ethods cannot be employed. It was also discussed in [26], that meta-
euristic methods are particularly suitable for this application when
ompared to gradient-based methods, due to spurious oscillations found
n the objective function, as a result of the numerical approximations
mployed in the hydrodynamic model.

In the original implementation, genetic algorithms are used which
re based on evolution theory featuring the survival of the fittest
ndividuals within a population. The initial population – composed of
defined number of individuals (𝑁𝐼𝑛𝑑) – is a set of WEC shapes, in this

ase, represented by random combinations of the optimisation variables
escribed earlier. The geometries are assessed based on the objective
unction and are assigned a fitness value according to Baker’s linear
anking algorithm [27]. A number of individuals in each generation are
elected through Stochastic Universal Sampling to pair by Intermediate
ecombination [28] (𝑁𝑃𝑎𝑟𝑒𝑛𝑡𝑠), which create a defined number of new

ndividuals – depending on the number of pairings per individual

𝑁𝑃𝑎𝑖𝑟𝑖𝑛𝑔𝑠) – that will carry forward their genetic information. Some
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characteristics of these new individuals are mutated using the Breeder
Genetic Algorithm Mutation [28] with a mutation rate of three over the
number of variables (𝑁𝑣𝑎𝑟𝑠) to ensure that further characteristics that
might improve the individual’s fitness and that were not present in the
first generation can be evaluated. Mutation helps to search more of the
solution space and avoids convergence on a particular local optimum.
To keep all characteristics of the best performing individuals in the
following generations, a number of the fittest individuals of the assessed
generation (𝑁𝐸𝑙𝑖𝑡𝑒) are reinserted in the following one — this is known
as Elite Reinsertion. To keep the population size constant throughout all
generations only 𝑁𝐼𝑛𝑑 −𝑁𝐸𝑙𝑖𝑡𝑒 children are selected for reinsertion. The
new generation is then again assessed based on the objective function.
In the original implementation this process was iterated 50 times in four
separate optimisation runs, and the 22 best individuals of the four runs
were then used in a further optimisation run with 50 more generations.
This involves 5010 function evaluations.

2.3. Implementation details and assumptions

The higher-order method in WAMIT was employed, which uses B-
splines instead of piecewise-constant values across discretisation areas
to represent the velocity potential on surfaces in a continuous manner.
To achieve this, the characteristics of the employed B-splines need to
be defined. Splines of order 𝑘 = 4 are used, and the orders of Gauss
quadrature used for the inner and outer integrations are defined based
on this as 𝑘 and 𝑘+1, respectively, as described in the manual [29]. The
number of subdivisions defined in WAMIT is equivalent to the number
of knot spans in a B-spline. See [30] for the used B-spline definition in
WAMIT, which is based on [31].

In [15], McCabe mentions the use of the iterative solver in WAMIT.
However, when using the higher-order method, the WAMIT man-
ual [29] does not recommend the use of the iterative solver, due
to a decrease in convergence. For this reason and after the iterative
and block-iterative solvers proved to have convergence difficulties, the
direct solver was used. Since convergence to the analytical solution is
not ensured by the direct solver, a convergence study was performed
for different optimised geometries by altering the number of B-spline
subdivisions and comparing to low-order results. Based on these results,
to achieve a good trade-off between calculation accuracy and run time,
two patches were defined one for the submerged surface (Patch 1) and
one for the interior free surface (Patch 2), each with 13 subdivisions
in the parametric direction 𝑢, and 3 subdivisions in the parametric
direction 𝑣, following WAMITs definition of the parametric directions.
A representation of a hull defined with this method is shown in Fig. 3,
where the two patches and their defined parametric directions can be
identified.

For all runs the irregular frequency removal option of WAMIT was
used. This prevents the optimisation algorithm from converging on
solutions that generate numerical errors due to irregular frequencies
in WAMIT.

2.4. Method verification

The method in [15] was re-implemented and verified. In this process
some extensions were found necessary for the optimisation problem to
be robustly defined. An overview of the performed studies within this
work to verify and expand the re-implemented method is provided in
this and the following sub-sections. The main additional requirements
discussed here are: (1) Additional constraints needed to be defined to
ensure that the generated shapes were closed and not self-crossing.
(2) A number of error checks needed to be introduced to avoid the
optimisation from selecting shapes that generated numerical errors in
the calculation of the hydrodynamic coefficients. These extensions were
key in allowing for the investigation of the most suitable geometry
definitions and optimisation algorithms, since with the more complex
and adaptable geometry definition, these improved implementations
5

Fig. 3. Example hull geometry approximated with two B-spline surfaces, identified as
Patch 1, and Patch 2. The parametric directions 𝑢 and 𝑣 as defined for each patch are
also represented here [17].

Fig. 4. Interpolation scheme for the generation of additional points for the B-spline
approximation based on the polyhedron vertices [17], adapted from [14].

challenged the optimisation to search more of the design space. This
improved search increased the probability of generating solutions that
produced unexpected errors. Additionally, the enhanced method dis-
cussed here is applicable to any degree-of-freedom. In summary, these
extensions increase the robustness of the optimisation approach, since
they enable the application of the method to a much wider range of
problems of WEC design optimisation.

With regards to the geometry definition, the interpolation strategy
represented in Fig. 4 for a set of points had to be modified for the
geometry to be closed. With reference to Fig. 2, the 𝜙 value of points
interpolated between vertex V7, and the vertices V5, V6, V10 and V11
was not interpolated but the 𝜙 value of the latter vertices was adopted.
For example, 𝜙7−5 = 𝜙5. This is because 𝜙7 is defined to be zero. In the
case of the point interpolated between vertex V7 and vertex V11, not
doing the above results in a geometry that does not close, because the
interpolated points do not lie on the symmetry plane.

To reproduce McCabe’s results, first the power calculation was
verified with one of the benchmark shapes described in [15], as well as
one of the resulting optimal geometries. The optimal geometry resulting
from power maximisation in the case of a maximal power restriction
on the PTO of 5 MW and a maximal stroke of 5 m (see Figure 3 and
associated text in [15]) approaches a hemispherical shape. The power
calculation results show good agreement with McCabe’s results with
a percentage difference of around 6.3%. To understand the source of
the variation, a study was performed here to obtain the percentage
deviation due to the use of random phase shifts for the superposition
of the spectral components of the waves. The percentage deviation due
to varying phase shifts in each power calculation was found to be only
0.1–0.2%. Additionally, the error introduced by eliminating frequencies
between 3 and 4 rad/s in the spectrum representation, which were
considered in [15], and using a step size of 0.2s instead of 0.05s was
studied. This was found to result in a difference in the calculated
power of only 0.14%. According to these results, the average power
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is underestimated in comparison to McCabe’s results with a percentage
difference of 6%. This is considered an acceptable difference, which
can stem from differences in the numerical implementation, such as
the WAMIT set-up, including the choice of solver and the resolution
of the analysis, which was described in more detail in Section 2.3.
The differences can also originate in the implementation of the power
calculation, such as in the choice of the time step size for the evaluation
of the instantaneous power. This is mentioned in [19].

After verification of the geometry definition and the power cal-
culation, the optimisation process was tested for the three objective
functions described in [15]. It was found that a number of exten-
sions were necessary to ensure a robust optimisation set-up, which are
detailed in the following section. Through a new verification of the
optimisation process, it was proven that the introduced extensions did
not affect the ability of the optimisation process to converge into the
same type of optimal solutions as before the extension. The obtained
mean annual power values with objective function −𝑃 /𝑉 were, how-
ver, only about 60% of the values obtained by McCabe. Although this
annot be concluded from the work presented in [15], this could be due
o the shapes obtained by McCabe being self-crossing and generating
umerical errors in WAMIT, which resulted in erroneously high mean
nnual power values.

.5. Method extensions

The required extensions to the method, as detailed in [15], are
resented here.

.5.1. Geometry definition
It was found that the definition of the geometry was not robust

nough, and that self-crossing geometries could result if no further
onstraints were defined. An example of such self-crossing geometries is
hown in Fig. 5. To avoid self-crossing geometries from being generated
n the optimisation process, the range of 𝜙𝑛 for 𝑛 = 2, 5, 8, 10 was
onstrained. This was done so that vertices V2 and V5 were always
n octant ‘V (+x +y −z)’, and V8 and V10 in octant ‘VI (−x +y −z)’:

𝜋
16

≤ 𝜙𝑛 ≤ 𝜋∕2 for 𝑛 = 2, 5
𝜋
2
≤ 𝜙𝑛 ≤ 15𝜋∕16 for 𝑛 = 8, 10

.5.2. Numerical errors
Some geometries caused numerical errors in the estimation of the

ydrodynamic coefficients in WAMIT, which can missguide the optimi-
ation search. To avoid this from happening, multiple checks were in-
roduced after the hydrodynamic coefficient calculation, so that shapes
enerating these errors are penalised and no objective function evalua-
ion is performed for them. The error checks were implemented so that
hey should detect any faults in the geometry evaluation without un-
ecessarily reducing the feasible solution space. It was also necessary to
eep the process computationally efficient. Defective geometries were
dentified and not evaluated. Various implementations and thresholds
ere tested to ensure their effectiveness. This was done by (1) applying

he different implementations to preliminary optimisation results, and
2) running the optimisation with the various implementations that
roved to work in the first step. The numerical checks introduced in
he following paragraphs were found to give the best trade-off in the
ulfilment of these requirements.

A first check for WAMIT convergence consists in comparing the
isplaced volume calculated automatically by WAMIT using three sep-
rate approaches. For this reason, the three values of the volume are
ompared in the first instance. If any of the three volumes differs by
ore than 2% from their mean value, the geometry is penalised by

etting 𝑃 = 0, 𝑉 = Inf and 𝑆 = Inf.
For certain shapes and numbers of patch subdivisions for the cal-

culation of the velocity potential, some diagonal terms of the damping
coefficient matrix attained negative values at some frequencies. This
6

could result in an erroneous power calculation or could be indicative
of non-converged results for the hydrodynamic coefficients. To avoid
the selection of geometries resulting in erroneously high power values,
the lowest value of the added damping coefficient over all frequencies
𝐶𝑎,𝑀𝐼𝑁 = min(𝐶𝑎(𝜔)) is evaluated in relation to the highest value
𝑎,𝑀𝐴𝑋 = max(𝐶𝑎(𝜔)). This is done for each diagonal term (i.e. degree
f freedom) separately. If the value is sufficiently negative (𝐶𝑎,𝑀𝐼𝑁 <

0 and |

|

𝐶𝑎,𝑀𝐼𝑁
|

|

> 𝐶𝑎,𝑀𝐴𝑋 ⋅10−2), the geometry is penalised. If, however,
the value is small and negative (𝐶𝑎,𝑀𝐼𝑁 < 0 and |

|

𝐶𝑎,𝑀𝐼𝑁
|

|

≤ 𝐶𝑎,𝑀𝐴𝑋 ⋅
0−2), diagonal added damping coefficient values for each frequency
re evaluated and if they are negative they are set to zero.

A specific combination of vertices can also result in numerical errors
n WAMIT. To be able to identify these combinations and discard the
ssociated geometries, the following approach was taken. Firstly, the
egrees of Freedom (DoFs) at which the highest 𝑀𝑎,𝑀𝐼𝑁∕𝑀𝑎,𝑀𝐴𝑋
nd 𝐶𝑎,𝑀𝐼𝑁∕𝐶𝑎,𝑀𝐴𝑋 ratios occur are identified as DoF𝑀𝑎,𝑀𝐴𝑋

and
oF𝐶𝑎,𝑀𝐴𝑋

, respectively. The frequencies at which these occur are
lso established 𝜔𝑀𝑎,𝐷𝑂𝐹𝑀𝐴𝑋

and 𝜔𝐶𝑎,𝐷𝑂𝐹𝑀𝐴𝑋
. Then the coordinates

f the vertices describing the geometry are varied slightly (by mul-
iplying them with 1.0001). At the previously identified DoFs and
requencies, the maximal values of the added mass (𝑀𝑎,𝐷𝑂𝐹𝑀𝐴𝑋) and
dded damping (𝐶𝑎,𝐷𝑂𝐹𝑀𝐴𝑋) coefficients are compared to equivalent
oefficient values obtained for the sightly varied geometry (𝑀𝑎,𝑐ℎ𝑒𝑐𝑘 and
𝑎,𝑐ℎ𝑒𝑐𝑘). If the difference between 𝑀𝑎,𝑐ℎ𝑒𝑐𝑘 and 𝑀𝑎,𝐷𝑂𝐹𝑀𝐴𝑋 , or 𝐶𝑎,𝑐ℎ𝑒𝑐𝑘

and 𝐶𝑎,𝐷𝑂𝐹𝑀𝐴𝑋 is greater than 0.1 ⋅ 𝑀𝑎,𝐷𝑂𝐹𝑀𝐴𝑋 or 0.1 ⋅ 𝐶𝑎,𝐷𝑂𝐹𝑀𝐴𝑋 ,
respectively, the geometry is penalised and the objective function is
not evaluated.

For some geometries, despite having positive added damping values,
the hydrodynamic coefficients varied so widely when analysed with
different numbers of B-spline subdivisions, that the calculated average
power showed large fluctuations. In some other cases, WAMIT hap-
pened to run with a set number of subdivisions, but did not run for
many of the other combinations. Since WAMIT convergence cannot
be proven in these cases, geometries exhibiting this type of behaviour
should not be considered. With this purpose, two additional resolutions
((14,14,4,4) and (12,12,4,4)) for the WAMIT solution were used, and if
any of the mentioned issues were encountered in both cases, geometries
were penalised and not evaluated further. The resolutions are denoted
by ‘the number of knot spans in 𝑢-direction for patch 1, the number
of knot spans in 𝑢-direction for patch 2, the number of knot spans in
𝑣-direction for patch 1, and the number of knot spans in 𝑣-direction for
patch 2’.

3. Case studies

In this section, the studied cases and approaches employed to inves-
tigate the most suitable choice of optimisation algorithm and geometry
definition for WEC geometry optimisation are introduced. The objective
functions used to study both choices are introduced first. Then the
approach to find the most suitable optimisation algorithm is presented.
The most suitable optimisation algorithms were then used to identify
the most suitable geometry definition. Small modifications to the most
suitable optimisation algorithms had to be considered for the different
geometry definitions, which are also reported here.

3.1. Geometry evaluation according to the objective function

Multiple metrics have been analysed on their suitability for compar-
ison of WECs [32,33], where the Levelised Cost of Energy represents the
ultimate metric for this purpose, because it depicts the price of energy
generation for a certain technology. However, this is very difficult to
quantify reliably due to lack of data and experience at initial stages of
a WEC design process. For this reason, alternative metrics have been
previously used for WEC comparison, such as, mean annual power
and annual energy production [7,24], Capture Width (CW) [34] or
Capture Width Ratio (CWR) [35–37]. Although when compared to CW,
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Fig. 5. Example of a self-crossing geometry resulting from an optimisation with the re-implemented method with objective function −𝑃∕𝑉 . (a) Complete submerged hull. The blue
arrow indicates wave direction [17]. (b) Hull cut at z = −4 m [17].
CWR takes into consideration device size in the objective function, and
this avoids the optimisation from converging on very big devices, the
definition of a characteristic length for different types of devices is not
straightforward. A few different metrics are selected here to assess how
optimal geometries vary depending on the selected metric and on the
choice of the device’s characteristic size. In this way, their suitability as
the objective function of a WEC optimisation process can be assessed.
An overview is given below, where 𝑃 represents the mean annual
power, 𝑉 the submerged volume, and 𝑆 the submerged surface area. 𝑃
is calculated here for a site off the West-Shetland shelf employing the
scatter diagram in [15].

The annual average power and the displaced volume 𝑉 were em-
ployed in the objective functions of the original implementation [15],
where the volume’s cubic root was used as a proxy for a characteristic
length. The following objective functions are, therefore, minimised in
the optimisation process:

𝑓1 = −𝑃 = 𝑓 (𝑥1, 𝑥2,… , 𝑥22), (2)

𝑓2 = − 𝑃
3
√

𝑉
= 𝑓 (𝑥1, 𝑥2,… , 𝑥22), (3)

𝑓3 = −𝑃
𝑉

= 𝑓 (𝑥1, 𝑥2,… , 𝑥22), (4)

New objective functions are introduced based on the actual sub-
merged surface area 𝑆, where its square root is also used as a proxy for
a characteristic length, and the displaced volume raised to the power of
2∕3 is used as a proxy for the submerged surface area. These objective
functions are also set to be minimised within the optimisation process.

𝑓4 = − 𝑃
𝑉 2∕3

= 𝑓 (𝑥1, 𝑥2,… , 𝑥22) (5)

𝑓5 = −𝑃
𝑆

= 𝑓 (𝑥1, 𝑥2,… , 𝑥22) (6)

𝑓6 = − 𝑃
√

𝑆
= 𝑓 (𝑥1, 𝑥2,… , 𝑥22) (7)

3.2. Optimisation algorithms

Different optimisation algorithms can be more suitable for different
types of problems, and their set-up and parameter tuning will have
an effect on their efficiency and effectiveness. Meta-heuristic methods
are more suitable to solve complex problems with many optimisation
variables, since they are generally able to find a good enough solu-
tion within an acceptable time scale, whereas the computational time
required with exact methods increases rapidly with problem complex-
ity [25]. For this reason, two meta-heuristic optimisation algorithms
are applied to this study, particle swarm optimisation and genetic al-
gorithms. Each of these algorithms is implemented with various setting
7

Table 1
Overview of GA implementations based on different parameter
combinations.

Implem. 𝑁𝐼𝑛𝑑 𝑁𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑁𝑃𝑎𝑖𝑟𝑖𝑛𝑔𝑠 𝑁𝐸𝑙𝑖𝑡𝑒

I [15] 22 10 2 2
II 22 20 1 2
III 44 42 1 2
IV 44 40 1 4
V 22 20 2 2

variations to be able to identify the better performing combination of
parameter values.

To find an implementation that is capable of achieving better results
with less function evaluations, a different approach than presented
in Section 2.2 as used by McCabe is applied here. The optimisation
process is iterated until a maximum number of generations (MaxGen=
100) is reached, after which it is hoped that the genetic algorithm
will converge on a relatively optimal WEC shape. Additionally, another
termination criterion was introduced, so that if the objective function
integer, calculated in [W] and [m], does not improve over 20 genera-
tions after a minimum of 50 generations, the optimisation is considered
to have converged.

Genetic algorithm
Genetic Algorithms (GAs) were introduced in Section 2.2 with the

re-implemented method. Genetic algorithms are implemented based on
the GA Toolbox from the University of Sheffield [38]. The considered
parameter variations are listed in Table 1.

Particle swarm algorithm
Particle Swarm Optimisation (PSO) is based on the behaviour of

bird flocking and fish schooling, where solutions of the optimisation
problem are represented by particles moving in space. The position of
a particle 𝑖 is described by vector 𝑥𝑖 ∈ R𝑛 and its movement by vector
𝑣𝑖 ∈ R𝑛. In each optimisation step 𝑡 each particle changes its position
and velocity based on: its previous position 𝑥𝑖(𝑡−1) and velocity 𝑣𝑖(𝑡−1);
its best previous position 𝑝𝑖; and the best position found in the swarm so
far 𝑝𝑔 according to Eqs. (8) and (9), where a weighting of the particle’s
inertia through an inertia factor 𝜑𝑖𝑐 is included.

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡). (8)

𝑣𝑖(𝑡) =𝜑𝑖𝑐 ⋅ 𝑣𝑖(𝑡 − 1) + 𝜑1 ⋅ 𝑟𝑎𝑛𝑑1 ⋅ (𝑝𝑖 − 𝑥𝑖(𝑡 − 1))
(9)
+ 𝜑2 ⋅ 𝑟𝑎𝑛𝑑2 ⋅ (𝑝𝑔 − 𝑥𝑖(𝑡 − 1)).
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Table 2
Overview of PSO implementations based on different parameter combinations.

Implem. 𝑁𝐼𝑛𝑑 𝜑𝑖𝑐 𝜑1 𝜑2 𝜑 Constraint

I 22 #1 0.5 1.25 1.75 ‘absorb’
II 44 #1 0.5 1.25 1.75 ‘absorb’
III 66 #1 0.5 1.25 1.75 ‘absorb’
IV 22 #1 0.5 1.25 1.75 ‘reflect’
V 22 #1 1.25 0.5 1.75 ‘absorb’
VI 22 #1 0.5 0.5 1 ‘absorb’
VII 22 #1 1.25 1.25 2.5 ‘absorb’
VIII 22 #1 2 2 4 ‘absorb’
IX 22 #2 0.5 1.25 1.75 ‘absorb’

Acceleration constants control the weight of the local and global best
values in the update formula. Limits for the sum of these parameters
were defined following the recommendations by Perez et al. [39] to
ensure stability of the algorithm.

0 < 𝜑 = 𝜑1 + 𝜑2 < 4 (10)

The inertia factor is defined as in Eq. (11), so that it increases in
each generation (Gen) [39]. This is because it is assumed that towards
the end of the optimisation process less exploration of the solution
space will be required and the solutions will be already converging to-
wards an optimum, around which more exploitation will be beneficial.

𝜑𝑖𝑐 = 𝜑𝑖𝑐,ℎ𝑖𝑔ℎ − 𝜑𝑖𝑐,𝑙𝑜𝑤 ∗ (Gen − 1)∕(MaxGen − 1). (11)

Two options for the calculation of the inertia lower and upper limits are
used. In option #1 the limits are fixed following the recommendation
in [40] with:

𝜑𝑖𝑐,𝑢𝑝𝑝𝑒𝑟 = 0.9; 𝜑𝑖𝑐,𝑙𝑜𝑤𝑒𝑟 = 0.4.

n option #2 the limits are defined based on the attraction factors 𝜑1
nd 𝜑2 following the recommendation in [39]

𝑖𝑐,𝑙𝑜𝑤𝑒𝑟 = (𝜑1 ⋅ 𝜑2)∕2 − 1; 𝜑𝑖𝑐,𝑢𝑝𝑝𝑒𝑟 = max(0.9, 𝜑𝑖𝑐,𝑙𝑜𝑤𝑒𝑟).

ow constraint variations are dealt with can be defined in different
ays. Here two options are considered: ‘absorb’, where the velocity is

et to 0, and ‘reflect’, where the velocity is set to the negative of the
urrent velocity. In both cases, the optimisation variable exceeding the
ounds is set equal to the exceeded bound.

The implementation of this algorithm is based on the code given
n [41]. This implementation uses a global best topology, and includes
n inertia weight in the update function. The considered parameter
ariations are listed in Table 2.

erformance indicators
To evaluate the performance of a single-objective optimisation algo-

ithm different indicators can be used. Because of the stochastic nature
f most meta-heuristic algorithms, multiple runs of the same algorithm
re required to estimate their performance. Each case is run three times,
o allow for a fairer comparison of the algorithm performance. For
ontext, when new algorithms are introduced it is common practice to
epeat runs around 100 times for a fair algorithm comparison. In this
ase, proven algorithm implementations are applied, so that the use of
hree repetitions is considered sufficient to be able to recognise advan-
ageous and disadvantageous trends of the different implementations.
nce advantageous trends have been recognised, further repetitions of

he better performing algorithm implementations could be carried out
or more detailed comparison.

According to [42], the metrics commonly used as indicators for
lgorithm performance are:

• Mean Best Fitness (MBF)
MBF is used to measure the effectiveness or solution quality of the
algorithm. It employs the average of the best objective function
value at the end of the optimisation run for multiple runs of the
same algorithm set-up.
8

• Average number of Evaluations to a Solution (AES)
AES is a measure for algorithm efficiency or speed, independent
from the used hardware. Given that the required result of the
search is known, the number of function evaluations until the
successful solution has been found is used. This value is averaged
over a set of successful runs.

• Success Rate (SR)
SR is a measure for the robustness of the algorithm. It can be
calculated as the percentage of runs that find a solution of the
required quality. This is applicable to cases where the optimal
solution can be identified or a criterion such as a threshold
describing sufficient quality of the solution can be defined.

Since the optimal solution is not known, instead of the Average
number of Evaluations to a Solution (AES), the averaged best objec-
tive function value is plotted here against the number of function
evaluations as an indicator of the algorithm efficiency. With the same
reasoning, the Success Rate (SR) cannot be quantified. For this reason,
a threshold for each objective function is defined, to identify success-
ful solutions. For the objective functions used by McCabe, the best
objective function values achieved in the runs using his optimisation
algorithm set-up with the extended implementation of the method are
used as thresholds. For the other cases, a 5% deviation of the best
objective value achieved over all runs is used as the threshold value.
In both cases, these are referred to as the ‘Threshold’ in the results.
When comparing with McCabe’s results (indicated as ‘McCabe’ in the
results), as well as with the results from the extended method, it should
be considered that, due to the optimisation set-up, those final objective
function values were achieved after 5010 function evaluations. The
Mean Best Fitness (MBF) is calculated from the best objective function
values at the end of the optimisation process. For both the AES equiv-
alent and MBF, the absolute values of the objective function results
are used in the discussion of the results, since they were just set to
be negative so that the optimisation is formulated as a minimisation
problem.

3.3. Geometry definition

Four different geometry definitions are used, to identify their lim-
itations and suitability for different problems. These are represented
in Fig. 6, with two axisymmetric floaters: (a) a hemisphere, and (b) a
vertical cylinder; and two x−z plane symmetric bodies: (c) a barge and
(d) a B-spline surface approximating vertices of a polyhedron as in [15].
For an equitable comparison between the different cases, the variable
bounds used for the simple shapes are comparable to those used for the
B-spline approach, and are summarised in Table 3.

The most suitable optimisation algorithms found for each case were
applied when investigating the suitability of the geometry definitions.
Due to the lower number of decision variables some of the algorithm
parameters needed to be adjusted.

The adapted PSO implementations vary only in the number of
variables and individuals, but in the case of the GA implementations,
equivalent parameter definitions had to be defined, which are repre-
sented in Table 4. The number of individuals was taken as 12 for the
cases where 22 individuals had been used before, and 24 for the cases
where 44 individuals had been employed. This is to ensure a minimum
number of individuals in the population, since one to three individuals
(equalling the number of optimisation variables) would not be enough
for a population based optimisation algorithm to function correctly.

Within the genetic algorithm implementations, the mutation rate
cannot be defined as before in dependence of the number of variables
and is defined instead through a constant rate of 3/11. In this way,
in average the one (for the hemisphere) to the three (for the barge)
genes have 3/11 probability of being mutated. This is, the mutation of
one of the genes of three individuals out of 11 per generation can be
expected for the one variable case, of one gene of six individuals for
the two variable case, and of one gene of nine individuals for the three

variable case.
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Fig. 6. Geometry definitions [17]: (a) Hemisphere, (b) Vertical cylinder, (c) Barge, (d) Polyhedron defining B-spline surface with numbered vertices and example representations
of the interpolated points in grey (Adapted from Figure 1 in [15]). The x−z plane is assumed to be a symmetry plane.
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able 3
verview of optimisation problem formulations using different geometry definitions.
Geometry
definition

Decision variables Variable bounds

a 𝑟 2.5 m ≤ 𝑟 ≤ 12.5 m
b 𝑟, 𝑑 2.5 m ≤ 𝑟, 𝑑 ≤ 12.5 m
c 𝑤, 𝑏, 𝑑 2.5 m ≤ 𝑤, 𝑏, 𝑑 ≤ 12.5 m

d [15] 22
coordinates

2.5 m ≤𝑟𝑛 ≤ 12.5 m

−7𝜋∕16 ≤𝜃𝑛 ≤ −𝜋∕16

𝜋∕16 ≤𝜙𝑛 ≤ 15𝜋∕16

| 𝑛 = 1,… , 11

| 𝑛 = 4, 5, 6, 10, 11

| 𝑛 = 2a, 3, 5a, 6, 8a, 10a

aMore restrictive bounds were applied in these cases, see Section 2.2.

Table 4
Summary of GA equivalent implementations for simple shapes.

Implementation 𝑁𝐼𝑛𝑑 𝑁𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑁𝑃𝑎𝑖𝑟 𝑁𝐸𝑙𝑖𝑡𝑒 MaxGen

GA-IV 24 20 1 4 70
GA-V 12 10 2 2 75

4. Results

4.1. Suitability of the optimisation algorithm

The previously introduced implementations of the genetic and par-
ticle swarm optimisation algorithms are applied to a single DoF (Surge)
and a multi-DoF (Surge, Heave and Pitch) oscillating device using
objective functions 𝑃 , 𝑃

𝑉
1
3

, 𝑃

𝑉
2
3

, 𝑃
𝑉 , 𝑃

𝑆 , and 𝑃

𝑆
1
2

. A detailed discussion of
the results is given here for two of the studied cases. These are used as
examples to demonstrate the process for selection of the most suitable
algorithms for each case. Results for the other cases can be found in
the Appendix. All results are summarised at the end of this section in
Table 8.

𝑃∕𝑉 -Surge
The effectiveness and robustness of the algorithms are measured

through the MBF and SR, respectively. The results of these indicators
are summarised in Table A.12. The best performing algorithms in terms
of MBF are PSO-II and PSO-III followed by PSO-VIII and GA-IV. The
SR is relatively high for most algorithms, indicating that the chosen
threshold value achieved with McCabe’s optimisation algorithm set-up
was rather low. This could be due to the optimisation set-up in [15]
not being the most suitable for this optimisation problem.

Regarding the algorithms efficiency and speed, the averaged best
objective function values per function evaluation are represented in
Figs. 7(a) and (b) for the GA and PSO implementations, respectively.
PSO-I and PSO-VII have the steepest improvement in objective function
value in the first 500 function evaluations. After that, PSO-VIII takes
over, approaching the optimal value faster than PSO-II and PSO-III.
PSO-VIII has the same slope and objective function values as PSO-II
9

around 1800 and 2200 function evaluations. However, the evaluation P
Table 5
Additional PSO implementation for a surging only case, minimising −𝑃∕𝑉 .

Implementation 𝑁𝐼𝑛𝑑 𝜑𝑖𝑐 𝜑1 𝜑2 𝜑 Constraint

PSO-X 44 (a) 2 2 4 ‘absorb’

of PSO-VIII ends at this point, and PSO-II continues improving and
reaches convergence around 3200 function evaluations. To investigate
this behaviour further, PSO-VIII was run for further 50 generations.
The implementation surpasses PSO-II after 2200 evaluations and then
follows a similar trend achieving higher objective function values.

Overall, algorithms with a higher number of individuals (PSO-II,
PSO-III and GA-IV) seem to have a performance advantage versus the
other algorithms. However, no further improvement is achieved by
increasing the number of individuals to three times the number of
variables (PSO-III) instead of two times (PSO-II). Additionally, high
acceleration constant values, seem to allow for a quicker search of the
optimisation space than the increased number of individuals. In sum-
mary, the most suitable optimisation algorithms for the optimisation
of a single-body oscillating in one DoF aiming at maximising the ratio
of mean power to submerged volume are PSO-VIII followed by PSO-II.
GAs seem to have a slower convergence in this case.

Due to the rapid initial improvement in objective function achieved
by PSO-VIII, and the later similar behaviour of PSO-II, a combination
of the beneficial characteristics of these two implementations was
studied. For this reason, an implementation (PSO-X) with the following
characteristics was evaluated for 50 and 75 generations in Table 5.

The MBF achieved with this combined algorithm is of 749.102
W/m3 with a success rate of three out of three runs achieving the
threshold value if run for 50 generations and of 783.881 W/m3 with an
R of 100% if run for 75 generations. According to Fig. 7(b), a faster
nitial progression is achieved, but a similar behaviour to PSO-VIII can
e observed after 1000 function evaluations. Overall, PSO-VIII run for
50 generations still showed the best results.

̄∕𝑉 -Surge, heave and pitch
In the multimodal case, the highest MBF is achieved by PSO-II,

hich also achieves this value consistently with 100% success rate. This
s shown in Table A.13.

In terms of convergence speed (see Figs. 7(c) and (d)), although
lgorithms such as PSO-VII and PSO-VIII show a faster improvement in
he initial function evaluations, PSO-II takes over after 1000 function
valuations, and reaches convergence after 2000 function evaluations.

Overall, PSO-II shows the best performance. However, a combina-
ion of the characteristics of the PSO implementation VII and II was
nvestigated to accelerate the initial improvement of PSO-II. For this
eason, an implementation (PSO-X) with the following characteristics
as studied in Table 6.

This new implementation has an MBF of 2704.970 W/m3 and a
uccess rate of one every three runs achieving the threshold value. It
lso does not seem to perform better in terms of speed. For this reason,

SO-II is finally selected as the most suitable algorithm for this case.
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Fig. 7. Mean best objective value per number of function evaluations using 𝑓3 = −𝑃∕𝑉 for a surging only device for (a) GA and (b) PSO implementations and for a device
oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [17].
−

Table 6
Additional PSO implementation for a surging, heaving and pitching case, minimising
−𝑃∕𝑉 .

Implementation 𝑁𝐼𝑛𝑑 𝜑𝑖𝑐 𝜑1 𝜑2 𝜑 Constraint

PSO-X 44 (a) 1.25 1.25 2.5 ‘absorb’

Table 7
Additional PSO implementation for a surging only case, minimising −𝑃∕𝑉 2∕3.

Implementation 𝑁𝐼𝑛𝑑 𝜑𝑖𝑐 𝜑1 𝜑2 𝜑 Constraint

PSO-X 66 (a) 1.25 0.5 1.75 ‘absorb’

Other cases
In all other cases, the most suitable algorithms were chosen follow-

ing the same logic as introduced above based on the obtained results.
The results for each of the studied cases are provided in the appendix
for completeness. The most suitable optimisation algorithms for each
case are summarised in Table 8.

As discussed above, some additional implementations were tested
after analysis of the results, to ensure that the most suitable imple-
mentation for each case was found. This was only necessary in one
additional situation. That is, when using objective function 𝑃∕𝑉 2∕3 for
a surging only device, a further implementation was studied to better
understand the effects of each of the parameters. Although it was found
that PSO-III showed the best performance, the combination of PSO-III
with an implementation showing a faster initial convergence such as
PSO-V was investigated. An implementation (PSO-X) with the following
combined characteristics was considered in Table 7.

Summary
The most suitable algorithms found for each of the studied cases are

summarised in Table 8.
10
In optimisation approaches using objective functions 𝑓1 and 𝑓5,
most algorithms converged into similar solutions. This could be an
indicator of the optimisation problem being less complex. In these
cases, GA’s seemed to have a slight advantage over PSO implemen-
tations, where the generation of larger numbers of children seemed
beneficial, exploring the solution space around the known solutions. In
the multiple-DoF case utilising 𝑓5, a PSO implementation showed better
suitability, where a higher weight towards the global best solution was
beneficial.

On the contrary 𝑓4 showed the largest spread of solution quality
depending on the used algorithm, which could be an indicator of the
optimisation problem being more complex. In general, this seemed to
be the case for the volume based objective functions 𝑓2, 𝑓3 and 𝑓4,
and for 𝑓6 for which PSO implementations performed better than GA
implementations. Implementations with a higher attraction towards the
global best solution performed well in all cases except for the 𝑓4 =

𝑃
𝑉 2∕3 multiple-DoF case, where bigger steps towards both the global

and local best solutions were more advantageous. The latter was also
beneficial for the single-DoF 𝑓1, 𝑓2 and 𝑓3 cases, and for all 𝑓6 cases.
However, for the single-DoF case optimised for 𝑓4, having a higher
number of individuals proved advantageous. When these characteristics
were combined for 𝑓3, no improvement in the results was seen.

In general, the use of twice to three times the number of variables
for the population size seemed to have a positive effect, although this
did not consistently result in the best solutions. GA implementations
with less than twice the number of variables for the population size did
not perform well, and their use is, thus, discouraged. The application
of the ‘reflect’ constraint handling option and of low acceleration con-
stants, such as in PSO-VI, did not show any benefit, and are, therefore,
not recommended.
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Table 8
Summary of the most suitable optimisation algorithms for the studied cases.

Objective function Surge Surge, Heave and Pitch

𝑓1 = −𝑃 GA-IV GA-V

𝑓2 = − 𝑃
3√𝑉

PSO-VIII PSO-IX

𝑓3 = − 𝑃
𝑉

PSO-VIII PSO-II

𝑓4 = − 𝑃
𝑉 2∕3 PSO-III PSO-VIII

𝑓5 = − 𝑃
𝐴

GA-IV PSO-I

𝑓6 = − 𝑃
√

𝐴
PSO-VIII PSO-VIII

Table 9
Overview of optimisation problem results for various shape definitions for objective
function 𝑓1 = −𝑃 . Previously obtained objective function values with B-spline surface
definition are given for reference.

DoFs Geometry
definition

𝑃 [kW] Variables [m]

Surge

with [15] 359.890
(a) 368.718 𝑟 = 12.057
(b) 392.872 𝑟 = 10.548 , 𝑑 = 11.443
(c) 413.524 𝑤 = 7.718, 𝑏 = 10.282 𝑑 = 12.496

Surge, Heave
and Pitch

with [15] 954.684
(a) 851.116 𝑟 = 10.705
(b) 917.261 𝑟 = 11.683 , 𝑑 = 9.328
(c) 954.068 𝑤 = 6.930, 𝑏 = 12.500, 𝑑 = 11.544

Table 10
Overview of optimisation problem results for various shape definitions for objective
function 𝑓3 = −𝑃∕𝑉 . Previously obtained objective function values with B-spline surface
definition are given for reference.

DoFs Geometry
definition

𝑃∕𝑉 [kW] Variables [m]

Surge

with [15] 881.903
(a) 271.813 𝑟 = 4.929
(b) 305.095 𝑟 = 2.526, 𝑑 = 12.500
(c) 313.536 𝑤 = 2.500, 𝑏 = 2.500, 𝑑 = 10.003

Surge, Heave
and Pitch

with [15] 3056.609
(a) 1267.877 𝑟 = 5.156
(b) 1140.612 𝑟 = 5.319 , 𝑑 = 2.814
(c) 1295.417 𝑤 = 12.500, 𝑏 = 2.500, 𝑑 = 2.500

Table 11
Overview of optimisation problem results for various shape definitions for objective
function 𝑓5 = −𝑃∕𝐴. Previously obtained objective function values with B-spline surface
efinition are given for reference.
DoFs Geometry

definition
𝑃∕𝑆 [kW] Variables [m]

Surge

with [15] 518.589
(a) 241.869 𝑟 = 6.484
(b) 429.864 𝑟 = 5.491, 𝑑 = 6.657
(c) 410.237 𝑤 = 3.626, 𝑏 = 8.357, 𝑑 = 9.237

Surge, Heave
and Pitch

with [15] 2875.168
(a) 1091.692 𝑟 = 5.247
(b) 1557.632 𝑟 = 5.276 , 𝑑 = 2.860
(c) 1276.621 𝑤 = 2.500, 𝑏 = 10.015, 𝑑 = 2.500

4.2. Suitability of the geometry definition

This evaluation is performed for a surging only device and a surging,
heaving and pitching device for the same location off the Shetland shelf.
The different geometry definitions are compared based on the achieved
objective function values at the end of the optimisation process. For
consistency with the previous sections, the absolute numbers of the
objective function values are reported here. The optimisation results
for 𝑓1 = −𝑃 , 𝑓3 = − 𝑃

𝑉 and 𝑓5 = − 𝑃
𝑆 are summarised in Tables 9, 10

nd 11, respectively.
11
All simple shapes achieve higher mean annual power production
alues than the optimal shape using the B-spline definition (which
ollows from McCabe [15]) for the surging only case optimised to
aximise the mean annual power. However, in the three DoF case, Mc-
abe’s shape definition achieves the highest value, although it performs
ery similarly to the optimal barge. It should be noted here that both
he optimal cylinder’s and the barge’s volume approach the maximum
et volume of 4000 m3, whereas the shape defined through the B-spline
urface has lower volumes of 3400 m3 and 2260 m3. Due to the other

constraints imposed on the geometry (such as the upper bounds on the
radii) it could be that constraints are more restrictive on volume for the
designer-bias free shape than for the simple shapes.

When comparing the optimal results achieved with 𝑓3, between
81% and 224% higher absolute objective function values are achieved
ith McCabe’s shape definition for the single-DoF case, and between
36% and 141% higher absolute objective function values for the
ultiple-DoF case.

Analogously, higher absolute objective function values are achieved
or 𝑓5 with between 20% and 114% higher absolute objective function
alues for the single-DoF case, and between 121% and 152% higher
bsolute objective function values achieved for the multiple-DoF case.

Overall, the more adaptable shape definition implemented here gen-
rally obtains more suitable shapes for optimisation problems, where
he objective function accounts for costs, or where more than one DoF
f oscillation is considered.

. Conclusions

The method for wave energy converter geometry optimisation pre-
ented by McCabe [15] was re-implemented and extended for robust-
ess. The key elements of such an optimisation process were identified
the geometry definition, the objective function, the optimisation al-
orithm and the formulation of the optimisation problem) and a set of
lternatives for each of the elements was defined. Here the suitability of
he geometry definition and of the optimisation algorithm were studied
y comparing results for a 1 Degree-of-Freedom (DoF) oscillating device
nd a 3 DoF case. In addition, six different objective functions were
onsidered which used the ratio of the mean annual power to cost
roxies based on the submerged volume or the submerged surface area.

A difference in the complexity of the solution spaces was identified
n relation to the employed objective function. The solution space seems
o be less complex for objective functions 𝑓1 = −𝑃 , and 𝑓5 = − 𝑃

𝑆 ,
where most algorithms tend to quickly converge on similar solutions.
The solution space seems to be more complex for submerged volume
based objective functions 𝑓2 = − 𝑃

3√𝑉
, 𝑓3 = − 𝑃

𝑉 and 𝑓4 = − 𝑃
𝑉 2∕3 ,

where algorithms show a diverse behaviour and more convergence
difficulty. In the former case, genetic algorithm implementations are
preferred, where higher numbers of children per generation appear to
be advantageous. In the latter case, particle swarm optimisation imple-
mentations performed better, where an advantage was found in the use
of higher acceleration constants and higher numbers of individuals in
the population. A preferred algorithm for each combination of objective
function and DoFs was found, with improvements in objective function
values compared to McCabe’s results of up to 11% while reducing the
number of function evaluations and, hence, computation time up to
about 50% of the original implementation’s values. The use of the most
suitable implementation for each case as found here is recommended.

The most suitable algorithms were then adapted and applied to
simpler geometry definitions: a hemisphere, a vertical cylinder and
a barge. Overall, the adapted version of McCabe’s shape definition
procedure obtained better performing geometries when the objective
function accounted for costs, with up to 224% higher absolute objective
function values achieved with this more complicated and adaptable
shape definition.

For future wave energy converter geometry optimisation studies,

the authors recommend the use of adaptable geometry definitions, such
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as suggested by McCabe, due to their potential to find better trade-
offs of performance and costs. Further improvements or analysis of
McCabe’s shape definition that could be considered in the future are,
(1) ensuring a smooth transition at the symmetry plane, by enforcing
the splines to be perpendicular to the symmetry plane at their crossing
points and (2) considering different radius and volume constraints.

The results found in the present study define the most suitable
methods for two of the key elements of a wave energy converter
hull geometry optimisation. These results are a stepping stone towards
the definition of a flexible and comprehensive method for hull ge-
ometry optimisation to aid device design for technology developers.
The study of the most suitable methods for wave energy converter
device comparison can also serve funding bodies to assess different
technologies.

In a further study, the authors will compare the results from single-
objective and multi-objective optimisation algorithms. This study was
performed in order to establish the suitability of the objective functions
and to determine the best formulation for the optimisation problems.
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Appendix. Optimisation algorithm progress along the number of
function evaluations, and MBF and SR values

See Figs. A.8–A.12 and Tables A.12–A.23.

Table A.12
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓3 = −𝑃∕𝑉 for a surging only device.

Algorithm Implementation MBF [W/m3] SR [–]

GA

I 559.603 2/3
II 586.740 1/3
III 686.580 3/3
IV 742.797 3/3
V 623.343 3/3

PSO

I 629.225 3/3
II 802.664 3/3
III 801.038 3/3
IV 546.416 1/3
V 596.608 2/3
VI 491.306 0/3
VII 642.171 2/3
VIII 759.251 (820.155)a 3/3
IX 629.388 2/3

aNote that the number in brackets is the value achieved when running this algorithm
for 150 generations instead of 100 generations.
12
Table A.13
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓3 = −𝑃∕𝑉 for a surging, heaving and pitching device.

Algorithm Implementation MBF [W/m3] SR [–]

GA

I 2488.561 0/3
II 2576.965 0/3
III 2692.504 1/3
IV 2528.971 0/3
V 2654.185 0/3

PSO

I 2768.118 0/3
II 3001.301 2/3
III 2931.454 3/3
IV 2638.838 0/3
V 2564.598 0/3
VI 2449.370 0/3
VII 2936.040 2/3
VIII 2795.731 1/3
IX 2686.212 0/3

Table A.14
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓1 = −𝑃 for a surging only device.

Algorithm Implementation MBF [kW] SR [–]

GA

I 356.663 0/3
II 358.515 1/3
III 360.992 2/3
IV 361.725 2/3
V 359.259 2/3

PSO

I 349.550 0/3
II 355.532 1/3
III 348.037 0/3
IV 345.141 0/3
V 351.985 0/3
VI 350.634 0/3
VII 351.723 1/3
VIII 351.798 0/3
IX 347.839 0/3

Table A.15
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓1 = −𝑃 for a device oscillating in surge, heave and pitch.

Algorithm Implementation MBF [kW] SR [–]

GA

I 946.324 3/3
II 948.775 3/3
III 949.641 3/3
IV 944.707 3/3
V 951.860 3/3

PSO

I 945.930 3/3
II 944.719 3/3
III 945.649 3/3
IV 931.182 3/3
V 947.410 3/3
VI 948.780 3/3
VII 937.472 3/3
VIII 936.870 3/3
IX 938.881 3/3
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Fig. A.8. Mean best objective value per number of function evaluations using 𝑓1 = −𝑃 for a surging only device for (a) GA and (b) PSO implementations and for a device
oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [17].

Fig. A.9. Mean best objective value per number of function evaluations using 𝑓2 = −𝑃∕𝑉
1
3 for a surging only device for (a) GA and (b) PSO implementations and for a device

oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [17].
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Fig. A.10. Mean best objective value per number of function evaluations using 𝑓4 = −𝑃∕𝑉
2
3 for a surging only device for (a) GA and (b) PSO implementations and for a device

oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [17].

Fig. A.11. Mean best objective value per number of function evaluations using 𝑓5 = −𝑃∕𝑆 for a surging only device for (a) GA and (b) PSO implementations and for a device
oscillating in surge, heave and pitch for (c) GA and (d) PSO implementations [17].
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Fig. A.12. Mean best objective value per number of function evaluations using 𝑓6 = −𝑃∕𝑆
1
2 for a surging only device for (a) GA and (b) PSO implementations and for a device

scillating in surge, heave and pitch for (c) GA and (d) PSO implementations [17].
able A.16
ean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective

unction 𝑓2 = −𝑃∕𝑉
1
3 for a surging only device.

Algorithm Implementation MBF [kW/m] SR [–]

GA

I 29.034 0/3
II 27.996 0/3
III 31.139 0/3
IV 31.778 0/3
V 32.151 2/3

PSO

I 29.832 0/3
II 28.667 0/3
III 30.678 1/3
IV 28.704 0/3
V 27.441 0/3
VI 28.551 0/3
VII 29.952 1/3
VIII 31.726 2/3
IX 31.288 1/3

Table A.17
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓2 = −𝑃∕𝑉

1
3 for a device oscillating in surge, heave and pitch.

Algorithm Implementation MBF [kW/m] SR [–]

GA

I 115.820 1/3
II 112.549 1/3
III 116.437 1/3
IV 119.007 3/3
V 119.377 2/3

PSO

I 116.782 1/3
II 119.091 2/3
III 113.328 1/3
IV 107.415 0/3
V 112.271 2/3
VI 111.111 1/3
VII 118.903 2/3
VIII 106.736 1/3
IX 119.923 3/3
15
Table A.18
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓4 = −𝑃∕𝑉

2
3 for a surging only device.

Algorithm Implementation MBF [W/m2] SR [–]

GA

I 4603.590 0/3
II 4674.434 0/3
III 4757.015 0/3
IV 4872.999 0/3
V 4766.316 0/3

PSO

I 3431.302 0/3
II 4928.454 0/3
III 5225.255 1/3
IV 4045.098 0/3
V 4765.205 0/3
VI 3417.741 0/3
VII 4079.769 0/3
VIII 4429.795 0/3
IX 4079.888 0/3

Table A.19
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓4 = −𝑃∕𝑉

2
3 for a device oscillating in surge, heave and pitch.

Algorithm Implementation MBF [kW/m2] SR [–]

GA

I 16.938 0/3
II 17.005 0/3
III 17.535 0/3
IV 17.794 0/3
V 17.243 0/3

PSO

I 17.901 1/3
II 17.978 1/3
III 18.802 2/3
IV 16.336 0/3
V 17.482 0/3
VI 16.578 0/3
VII 18.642 2/3
VIII 19.450 3/3
IX 17.088 1/3



Applied Energy 280 (2020) 115952A. Garcia-Teruel et al.
Table A.20
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓5 = 𝑃∕𝑆 for a device oscillating in surge only.

Algorithm Implementation MBF [kW/m2] SR [–]

GA

I 515.265 3/3
II 515.346 3/3
III 515.862 3/3
IV 517.412 3/3
V 516.145 3/3

PSO

I 512.556 3/3
II 512.952 3/3
III 516.646 3/3
IV 509.957 3/3
V 516.223 3/3
VI 514.651 3/3
VII 514.637 3/3
VIII 507.149 3/3
IX 510.017 3/3

Table A.21
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓5 = −𝑃∕𝑆 for a device oscillating in surge, heave and pitch.

Algorithm Implementation MBF [kW/m2] SR [–]

GA

I 2751.441 3/3
II 2752.951 2/3
III 2779.303 2/3
IV 2739.368 2/3
V 2762.598 2/3

PSO

I 2852.934 3/3
II 2851.767 3/3
III 2872.462 3/3
IV 2625.956 0/3
V 2818.093 3/3
VI 2729.297 2/3
VII 2786.743 2/3
VIII 2805.595 2/3
IX 2799.169 3/3

Table A.22
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓6 = −𝑃∕𝑆

1
2 for a device oscillating in surge only.

Algorithm Implementation MBF [kW/m] SR [–]

GA

I 11.781 1/3
II 11.721 2/3
III 12.061 2/3
IV 12.023 2/3
V 11.798 1/3

PSO

I 11.997 2/3
II 12.187 3/3
III 12.074 3/3
IV 11.843 2/3
V 12.074 2/3
VI 11.777 3/3
VII 12.130 3/3
VIII 12.203 3/3
IX 11.781 3/3
16
Table A.23
Mean Best Fitness (MBF) and Success Rate (SR) for all algorithms applied to objective
function 𝑓6 = −𝑃∕𝑆

1
2 for a device oscillating in surge only.

Algorithm Implementation MBF [kW/m] SR [–]

GA

I 39.332 2/3
II 39.334 0
III 38.288 0
IV 38.208 0
V 38.637 1/3

PSO

I 39.829 2/3
II 38.660 1/3
III 39.526 1/3
IV 37.952 0
V 38.610 0
VI 39.242 1/3
VII 40.239 2/3
VIII 40.317 2/3
IX 38.500 1/3

References

[1] Nguyen AT, Reiter S, Rigo P. A review on simulation-based optimization methods
applied to building performance analysis. Appl Energy 2014;113:1043–58. http:
//dx.doi.org/10.1016/j.apenergy.2013.08.061.

[2] Yang H, Wei Z, Chengzhi L. Optimal design and techno-economic analysis of
a hybrid solar-wind power generation system. Appl Energy 2009;86(2):163–9.
http://dx.doi.org/10.1016/j.apenergy.2008.03.008.

[3] Ekren O, Ekren BY. Size optimization of a PV/wind hybrid energy con-
version system with battery storage using simulated annealing. Appl Energy
2010;87(2):592–8. http://dx.doi.org/10.1016/j.apenergy.2009.05.022.

[4] Wang JJ, Jing YY, Zhang CF. Optimization of capacity and operation for CCHP
system by genetic algorithm. Appl Energy 2010;87(4):1325–35. http://dx.doi.
org/10.1016/j.apenergy.2009.08.005.

[5] Strategic Initiative for Ocean Energy (SI OCEAN). Ocean energy: Cost of energy
and cost reduction opportunities. SI OCEAN; 2013, May.

[6] Bull D, Ochs ME, Laird DL, Boren B, Jepsen RA. Technological cost-reduction
pathways for oscillating water column wave energy converters in the marine
hydrokinetic environment. 2013, p. 1–50. http://dx.doi.org/10.2172/1092993,
September.

[7] Gilloteaux J-C, Ringwood J. Control-informed geometric optimisation of wave
energy converters. IFAC Proc Vol 2010;(20):366–71. http://dx.doi.org/10.3182/
20100915-3-DE-3008.00072.

[8] Kurniawan A, Moan T. Multi-objective optimization of a wave energy absorber
geometry. In: Proc. of the 27th international workshop on water waves and
floating bodies. no. 2. 2012. p. 3–6.

[9] Kurniawan A, Moan T. Optimal geometries for wave absorbers oscillating about
a fixed axis. IEEE J Ocean Eng 2013;38(1):117–30. http://dx.doi.org/10.1109/
JOE.2012.2208666.

[10] Costello R, Teillant B, Weber J, Ringwood JV. Techno-economic optimisation for
wave energy converters. In: Proc. of the 4th international conference on ocean
energy. 2012.

[11] Blanco M, Lafoz M, Navarro G. Wave energy converter dimensioning constrained
by location, power take-off and control strategy. In: Proc. of 2012 IEEE
international symposium on industrial electronics. IEEE; 2012, p. 1462–7. http:
//dx.doi.org/10.1109/ISIE.2012.6237307.

[12] Weber J, Thomas GP. Turbine type & design selection in the context of multi-
parametric overall system optimisation of Oscillating Water Column wave energy
converters Introduction & Motivation. In: Proc. of the international conference
on ocean energy. Bremerhaven, Germany. 2006.

[13] Pillai AC, Thies PR, Johanning L. Mooring system design optimization using
a surrogate assisted multi-objective genetic algorithm. Eng Optim 2018;1–23.
http://dx.doi.org/10.1080/0305215X.2018.1519559.

[14] McCabe AP, Aggidis GA, Widden MB. Optimizing the shape of a surge-
and-pitch wave energy collector using a genetic algorithm. Renew Energy
2010;35(12):2767–75. http://dx.doi.org/10.1016/j.renene.2010.04.029.

[15] McCabe AP. Constrained optimization of the shape of a wave energy collector by
genetic algorithm. Renew Energy 2013;51:274–84. http://dx.doi.org/10.1016/j.
renene.2012.09.054.

[16] Weber J, Thomas GP. An efficient flexible engineering tool for multi-parametric
hydrodynamic analysis in the design & optimisation of WECs. In: Proc. of the
6th European wave and tidal energy conference. Glasgow, Scotland. 2005. p.
543–48.

[17] Garcia-Teruel A, DuPont B, Forehand DIM. Hull geometry optimisation of wave
energy converters: on the choice of the optimisation algorithm and the geometry
definition. In: figshare. 2020, http://dx.doi.org/10.6084/m9.figshare.13070234.
v1.

http://dx.doi.org/10.1016/j.apenergy.2013.08.061
http://dx.doi.org/10.1016/j.apenergy.2013.08.061
http://dx.doi.org/10.1016/j.apenergy.2013.08.061
http://dx.doi.org/10.1016/j.apenergy.2008.03.008
http://dx.doi.org/10.1016/j.apenergy.2009.05.022
http://dx.doi.org/10.1016/j.apenergy.2009.08.005
http://dx.doi.org/10.1016/j.apenergy.2009.08.005
http://dx.doi.org/10.1016/j.apenergy.2009.08.005
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb5
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb5
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb5
http://dx.doi.org/10.2172/1092993
http://dx.doi.org/10.3182/20100915-3-DE-3008.00072
http://dx.doi.org/10.3182/20100915-3-DE-3008.00072
http://dx.doi.org/10.3182/20100915-3-DE-3008.00072
http://dx.doi.org/10.1109/JOE.2012.2208666
http://dx.doi.org/10.1109/JOE.2012.2208666
http://dx.doi.org/10.1109/JOE.2012.2208666
http://dx.doi.org/10.1109/ISIE.2012.6237307
http://dx.doi.org/10.1109/ISIE.2012.6237307
http://dx.doi.org/10.1109/ISIE.2012.6237307
http://dx.doi.org/10.1080/0305215X.2018.1519559
http://dx.doi.org/10.1016/j.renene.2010.04.029
http://dx.doi.org/10.1016/j.renene.2012.09.054
http://dx.doi.org/10.1016/j.renene.2012.09.054
http://dx.doi.org/10.1016/j.renene.2012.09.054
http://dx.doi.org/10.6084/m9.figshare.13070234.v1
http://dx.doi.org/10.6084/m9.figshare.13070234.v1
http://dx.doi.org/10.6084/m9.figshare.13070234.v1


Applied Energy 280 (2020) 115952A. Garcia-Teruel et al.
[18] Papalambros PY, Wilde DJ. Principles of optimal design: Modeling and
computation. Cambridge University Press; 2000, p. 416.

[19] Garcia-Teruel A, Forehand DIM. Optimal wave energy converter geometry
for different modes of motion. In: Advances in renewable energies offshore:
Proceedings of the 3rd international conference on renewable energies offshore.
Lisbon. 2018. p. 299–05.

[20] Tucker M, Pitt E. Waves in ocean engineering. Elsevier Science; 2001.
[21] Cahill B, Lewis T. Wave period ratios and the calculation of wave power. In:

Proc. of the 2nd marine energy technology symposium. Seattle. 2014.
[22] Falnes J. Ocean waves and oscillating systems. New York: Cambridge University

Press; 2002.
[23] Babarit A, Clément AH. Shape optimisation of the SEAREV wave energy

converter. In: Proc. of the 9th World renewable energy congress. 2006.
[24] Gomes R, Henriques J, Gato L, Falcão A. Hydrodynamic optimization of an

axisymmetric floating oscillating water column for wave energy conversion.
Renew Energy 2012;44:328–39. http://dx.doi.org/10.1016/J.RENENE.2012.01.
105.

[25] Blum C, Roli A. Metaheuristics in combinatorial optimization. ACM Comput Surv
2003;35(3):268–308. http://dx.doi.org/10.1145/937503.937505.

[26] Ribeiro E Silva S, Gomes RP, Falcaõ AF. Hydrodynamic optimization of the
UGEN: Wave energy converter with U-shaped interior oscillating water column.
Int J Mar Energy 2016;15:112–26. http://dx.doi.org/10.1016/j.ijome.2016.04.
013.

[27] Baker J. Reducing bias and inefficiency in the selection algorithm. In: Proc. of
the 2nd international conference on genetic algortihms and their applications.
Hillsdale, NJ. 1987. p. 14–21.

[28] Mühlenbein H, Schlierkamp-Voosen D. Predictive models for the breeder genetic
algorithm. Evol Comput 1993;1(1):25–49. http://dx.doi.org/10.1162/evco.1993.
1.1.25.

[29] MIT. WAMIT user manual. URL http://www.wamit.com/manualupdate/V70_
manual.pdf.

[30] Maniar HD. A three dimensional higher order panel method based on B-
splines (Ph.D. thesis), Massachusetts Institute of Technology; 1995, URL https:
//dspace.mit.edu/handle/1721.1/11127.
17
[31] Rogers DF, Adams JA. Mathematical elements for computer graphics.
McGraw-Hill Book Company; 1976.

[32] Babarit A, Hals J, Muliawan M, Kurniawan A, Moan T, Krokstad J. Numerical
benchmarking study of a selection of wave energy converters. Renew Energy
2012;41:44–63. http://dx.doi.org/10.1016/j.renene.2011.10.002.

[33] de Andres A, Maillet J, Todalshaug JH, Möller P, Jeffrey H. On the optimum
sizing of a real WEC from a techno- economic perspective. In: International
conference on ocean, offshore and arctic engineering. 2016.

[34] Kalofotias F. Study for the hull shape of a wave energy converter-point absorber
design optimization & modeling improvement (Msc thesis), (June):University of
Twente; 2016, p. 37.

[35] Guanche R, Gómez V, Vidal C, Eguinoa I. Numerical analysis and perfor-
mance optimization of a submerged wave energy point absorber. Ocean Eng
2013;59:214–30. http://dx.doi.org/10.1016/J.OCEANENG.2012.10.016.

[36] Madhi F, Sinclair ME, Yeung RW. The ‘‘Berkeley Wedge’’: an asymmetrical
energy-capturing floating breakwater of high performance. Mar Syst Ocean
Technol 2014;9(1):5–16.

[37] Babarit A. A database of capture width ratio of wave energy converters. Renew
Energy 2015;80:610–28. http://dx.doi.org/10.1016/j.renene.2015.02.049.

[38] Chipperfield A, Fleming P, Pohlheim H, Fonseca C. Genetic algorithm toolbox -
User’s guide. University of Sheffield; 1995.

[39] Perez R, Behdinan K. Particle swarm approach for structural design opti-
mization. Comput Struct 2007;85(19–20):1579–88. http://dx.doi.org/10.1016/J.
COMPSTRUC.2006.10.013.

[40] del Valle Y, Venayagamoorthy G, Mohagheghi S, Hernandez J-C, Harley R.
Particle swarm optimization: Basic concepts, variants and applications in power
systems. IEEE Trans Evol Comput 2008;12(2):171–95. http://dx.doi.org/10.
1109/TEVC.2007.896686.

[41] Constrained particle swarm optimization, version 1.31.2. In: Mathworks file
exchange. 2016, URL https://uk.mathworks.com/matlabcentral/fileexchange/
25986-constrained-particle-swarm-optimization.

[42] Eiben AE, Smith JE. Introduction to evolutionary computing techniques. 2nd ed..
Berlin Heidelberg: Springer; 2012, http://dx.doi.org/10.1109/etd.1995.403482.

http://refhub.elsevier.com/S0306-2619(20)31407-0/sb18
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb18
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb18
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb20
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb22
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb22
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb22
http://dx.doi.org/10.1016/J.RENENE.2012.01.105
http://dx.doi.org/10.1016/J.RENENE.2012.01.105
http://dx.doi.org/10.1016/J.RENENE.2012.01.105
http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1016/j.ijome.2016.04.013
http://dx.doi.org/10.1016/j.ijome.2016.04.013
http://dx.doi.org/10.1016/j.ijome.2016.04.013
http://dx.doi.org/10.1162/evco.1993.1.1.25
http://dx.doi.org/10.1162/evco.1993.1.1.25
http://dx.doi.org/10.1162/evco.1993.1.1.25
http://www.wamit.com/manualupdate/V70_manual.pdf
http://www.wamit.com/manualupdate/V70_manual.pdf
http://www.wamit.com/manualupdate/V70_manual.pdf
https://dspace.mit.edu/handle/1721.1/11127
https://dspace.mit.edu/handle/1721.1/11127
https://dspace.mit.edu/handle/1721.1/11127
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb31
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb31
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb31
http://dx.doi.org/10.1016/j.renene.2011.10.002
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb34
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb34
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb34
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb34
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb34
http://dx.doi.org/10.1016/J.OCEANENG.2012.10.016
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb36
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb36
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb36
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb36
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb36
http://dx.doi.org/10.1016/j.renene.2015.02.049
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb38
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb38
http://refhub.elsevier.com/S0306-2619(20)31407-0/sb38
http://dx.doi.org/10.1016/J.COMPSTRUC.2006.10.013
http://dx.doi.org/10.1016/J.COMPSTRUC.2006.10.013
http://dx.doi.org/10.1016/J.COMPSTRUC.2006.10.013
http://dx.doi.org/10.1109/TEVC.2007.896686
http://dx.doi.org/10.1109/TEVC.2007.896686
http://dx.doi.org/10.1109/TEVC.2007.896686
https://uk.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization
https://uk.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization
https://uk.mathworks.com/matlabcentral/fileexchange/25986-constrained-particle-swarm-optimization
http://dx.doi.org/10.1109/etd.1995.403482

	Hull geometry optimisation of wave energy converters: On the choice of the optimisation algorithm and the geometry definition
	Introduction
	Methodology
	Optimisation problem
	Re-implemented method
	Geometry definition
	Geometry evaluation according to the objective function
	Parameter constraints
	Optimisation procedure

	Implementation details and assumptions
	Method verification
	Method extensions
	Geometry definition
	Numerical errors


	Case studies
	Geometry evaluation according to the objective function
	Optimisation algorithms
	Genetic Algorithm
	Particle Swarm Algorithm
	Performance indicators

	Geometry definition

	Results
	Suitability of the optimisation algorithm
	P/V-Surge
	P/V-Surge, Heave and Pitch
	Other cases
	Summary

	Suitability of the geometry definition

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix. Optimisation algorithm progress along the number of function evaluations, and MBF and SR values
	References


