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ABSTRACT 

Through the application of statistical models, the Active 
Mission Success Estimation (AMSE) introduced in this paper 
can be performed during a rapidly developing unanticipated 
failure scenario to support decision-making. AMSE allows 
for system operators to make informed management and 
control decisions by performing analyses on a nested system 
of functional models that requires low time and 
computational cost. Existing methods for analyses of mission 
success such as such as Probabilistic Risk Assessment (PRA) 
or Worst Case Analysis (WCA) have been applied in the 
analysis and planning of space missions since the mid-20th 
century. While these methods are effective in analyzing 
anticipated failure scenarios, they are built on computational 
models, logical structures, and statistical models that often 
are difficult and time-intensive to modify, and are 
computationally inefficient leading to very long calculation 
times and making their ability to respond to unanticipated or 
rapidly developing scenarios limited. To demonstrate AMSE, 
we present a case study of a generalized crewed Martian 
surface station mission. A crew of four astronauts must 
perform activities to achieve scientific objectives while 
surviving for 1070 Martian sols before returning to Earth. A 
second crew arrives at the same site to add to the settlement 
midway through the mission. AMSE uses functional models 
to represent all of the major environments, infrastructure, 
equipment, consumables, and critical systems of interest 
(astronauts in the case study presented) in a nested super 
system framework that is capable of providing rapidly 
reconfigurable and calculable analysis. This allows for 
AMSE to be used to make informed mission control decisions 
when facing rapidly developing or unanticipated scenarios. 
Additionally, AMSE provides a framework for the inclusion 
of humans into functional analysis through a systems 
approach. Application of AMSE is expected to produce 
informed decision-making benefits in a variety of situations 

where humans and machines work together toward mission 
goals in uncertain and unpredictable conditions.   

ABBREVIATIONS 

AI  Artificial Intelligence  

AMSE  Active Mission Success Estimation  

CDF  Cumulative Distribution Function  

DRV  Daily Recommended Value  

EMU Extravehicular Mobility Units  

EVA Extra Vehicular Activity  

FBED  Functional Basis for Engineering Design  

FFD  Referred to as Functional Flow Diagrams  

FFIP  Failure Flow Identification and Propagation  

ISRU  In-Situ Resource Utilization  

IVA  Intra-Vehicular Activities  

PDM  Prognostic-enabled Decision Making  

PHM  Prognostics and Health Management  

PRA  Probabilistic Risk Assessment  

SEV  Surface Exploration Vehicle  

WCA  Worst Case Analysis 

1. INTRODUCTION 

The development of risk analysis has been deeply linked to 
space exploration since the formalization of risk analysis 
methods following the Second World War. Both the era of 
space exploration and risk analysis of complex systems 
spawned from the technological progress of the Second 
World War and the advent of modern rocketry in the early 
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twentieth century (Goddard 1920). The space race between 
the United States of America and the Soviet Union spurred 
the development of tools such as Probabilistic Risk 
Assessment (PRA) (Kumamoto and Henley 1996) with the 
aim to closely examine complex system risk probabilistically 
and quantitatively. At the same time, Prognostics and Health 
Management (PHM) began to emerge. As increasing 
complex systems were developed for space flight and 
exploration, it became imperative that engineers and 
operators have the ability to accurately and actively monitor 
system health and performance. Sensors were developed that 
could monitor every aspect of system operation, including 
phenomena that would otherwise have been imperceptible. 
Taking data from these sensors, models of system operation 
and health could be constructed that utilize condition-based 
analysis, laying the groundwork for modern PHM. In recent 
years, there has been an increased interest in understanding 
risk and health of systems during the early phase of design of 
complex systems (Douglas Lee Van Bossuyt 2015; Douglas 
L Van Bossuyt 2013; Douglas Van Bossuyt 2012; Van 
Bossuyt, Tumer, and Wall 2013). However, a gap persists in 
the development of real-time risk-informed decision support 
tools for active and ongoing missions. Contemporary mission 
analysis and risk modeling methodologies require lengthy 
and extensive adjustment of system models and reanalysis 
when faced with unforeseen events. The subsequent delay of 
critical risk information necessary for decisions can lead to 
rapid development of complex and dangerous scenarios.  

This paper presents the Active Mission Success Estimation 
(AMSE) method that provides timely risk information to 
inform mission decisions being made in crisis during rapidly 
evolving situations. Through adoption of a modular risk-
informed object-oriented approach to mission modeling, 
health monitoring, and analysis—and active recalculation of 
risk of mission failure as the mission progresses—a more 
accurate estimation of the probability of mission success can 
be developed and mission-critical decisions with many 
possible options can be analyzed to help inform mission 
control decision to increase the probability of total mission 
success.  

The performance of AMSE necessitates that all mission-
critical components be modeled thoroughly using risk 
analysis and prognostic techniques, and the models are 
developed for modularity to enable the rapid rearrangement 
of the model elements to evaluate available decision 
outcomes and estimate each outcome’s mission success 
probability. In order to effectively represent a mission 
framework, a functional modeling method is presented where 
environments of interest and relevance can nest within each 
other and contain the systems of interest within a super 
system. This nested super-systems approach to modeling is 
used to determine what environmental hazards are present 
and if these hazards can cause damage to the system of 
interest. Modeled mission tasks are analyzed including 
internal and external system risks, and hazard mitigating 

factors such as nested functional modeling environments 
representing protective barriers. The AMSE method 
presented in this paper is demonstrated on a case study of a 
crewed multiyear scientific mission on the surface of Mars 
for the establishment of a permanent scientific base. In the 
case study, the eight astronauts constitute the systems of 
interest and their safety and survival are considered the metric 
for mission success.  

1.1. Specific Contributions  

This paper presents the AMSE method for the real-time 
estimation of risk during a space mission case study through 
the utilization of risk analysis techniques and functional 
modeling. The AMSE method provides decision-makers with 
up-to-date risk information at critical mission decision points. 
The AMSE method uses a form of nested functional models 
to analyze the influence of various layers of environmental 
protection such as space suits, vehicles, or structures. These 
protective layers can either provide protection to the systems 
of interest directly, protect mission-critical systems outside 
of the subject of interest, or protect each other through 
layering systems in a nested structure. The AMSE functional 
modeling technique takes a dynamic systems approach to 
provide a comprehensive picture of the interactions between 
various mission components. AMSE provides a rapid and 
active estimation of current mission success, as well as 
projections of probable total mission success based upon 
potential decisions. Through active analysis of the probability 
of mission success at decision points, the probability of total 
mission success can be optimized allowing for greater 
mission safety and potentially greater scientific yield. 
Additionally, the object-oriented modular nature of the 
AMSE method enables fast adaption to unexpected mission 
scenarios. Though AMSE was developed for application in 
risk analysis of a space mission operations case study, AMSE 
can be easily adapted for use with any complex system and 
has potential applications for autonomous decision making.  

1.2. Assumptions  

AMSE depends on the validity of multiple, informed 
assumptions. The first assumption is that the functional 
model used is of an appropriate level of detail to be accurate. 
To ensure this, we have used established functional modeling 
taxonomy and development standards. 

Second, it is assumed that the failure distribution for a 
mission can be represented by an exponential distribution. 
The exponential distribution describes processes in which 
events occur continuously and independently at a constant 
average rate (a Poisson process). However, under different 
missions that we did not consider, there may be a situation in 
which risk cannot be described as continuous or independent, 
and in those cases, an alternative distribution should be used.  

The third assumption is that failure of individual sub-systems 
can be considered independent. This should be the case if a 
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system is properly decomposed into a functional model, in 
which all functions of a system are separated. At this level of 
decomposition, failures that may be correlated in the whole 
system are instead connected through flows and failure 
propagation.  

2. BACKGROUND 

AMSE builds on the topics of decision theory, functional 
modeling, risk analysis, and PHM. Existing mission success 
estimation methods rely on Worst Case Analysis (WCA) (Ye 
1997; Nassif, Strojwas, and Director 1986) or Probabilistic 
Risk Assessment (PRA) (Modarres, Kaminskiy, and Krivtsov 
2011; Mohaghegh, Kazemi, and Mosleh 2009). WCA, PRA, 
and other related methodologies are adept at analyzing 
potential foreseeable failure scenarios but suffer in their 
ability to perform in situations where rapid reconfiguration of 
the model is necessary. Such model reconfigurations are 
needed during rapidly developing situations, such as those 
faced by in a space mission disaster.  

2.1. Functional Modeling  

Functional modeling encompasses a variety of methods used 
to represent and model the functionality of a system. 
Functional models include many sub-functions, representing 
work performed in the system as flows—the passage of 
materials, information, and energy—between functions and 
sub-functions. In addition to flows internal to the system, 
export flows and import flows enter and exit the system 
boundary. A popular way to represent a functional model is 
through Flow Block Diagrams, also often interchangeably 
referred to as Functional Flow Diagrams (FFD) (Blanchard 
and Fabrycky 1990; Bohm, Stone, and Szykman 2005). FFDs 
are useful for modeling systems with direct unidirectional 
flows passing between a variety of functions and clear system 
inputs and outputs can be defined. One issue with many 
existing methodologies for functional modeling is that they 
are difficult to apply to systems that are less linear, resulting 
in tangled networks of functions and flows that are difficult 
or impractical to analyze, or must be simplified to the point 
where they provide an inaccurate representation of the system 
and its associated dynamics.  

The Functional Basis for Engineering Design (FBED) 
(Bryant et al. 2005; Hirtz et al. 2002; Kurtoglu et al. 2005; 
Stone and Wood 2000), provides concise definitions of 
functions and flows that describe all possible engineered 
systems. Through the use of FBED, we can construct 
functional models of complex systems, using a common 
taxonomy of functions and flows. The process of developing 
an FBED model is:  

1) Generate a Black Box model. This takes the highest-
level-possible view of the system and only considers flows 
into and out of the overarching system model.  

2) Create function chains for each input flow and order 
them with respect to time. This step consists of following a 
flow from its entrance into the system, through all sub-
systems that interact with the flow, and finally exiting the 
system. All systems that interact with the flow should then be 
placed into chronological order from the perspective of the 
flow. 

3) Aggregate function chains into a functional model. In 
Step 3, the final step of FBED, the functional chains are 
combined in order to determine the underlying functional 
structure of the system. FBED is utilized in this paper due to 
the advanced development of failure analysis methods that 
are built upon FBED (Jensen, Tumer, and Kurtoglu 2008; 
Kurtoglu, Tumer, and Jensen 2010; O’Halloran, 
Papakonstantinou, and Van Bossuyt 2015; Ramp and Van 
Bossuyt 2014; Stone, Tumer, and Van Wie 2005).  

2.2. Space Mission Risk Assessment  

Many risk assessment modeling techniques attempt to 
represent trends of physical failure through the application of 
various failure distributions. One common method is the use 
of a hazard rate, λ, which describes the expected number of 
failures over a period of time. The hazard rate can be used in 
a failure distribution such as an exponential distribution (Eq. 
1) to calculate the probability of survival of a system or sub-
system at a given time (Wertz, Everett, and Puschell 2011):  

 (1) 

The expected survival rate can then be subtracted from 1 (Eq. 
2) in order to find the failure rate, or the probability that a 
system will have survived after time, t:  

 (2) 

The failure rate (or related metrics) appears in a wide variety 
of risk assessment methods, but many additional and more 
complex techniques exist for evaluating the risk of failure of 
a system. One such method for evaluating the risk of failure 
is Failure Flow Identification and Propagation (FFIP) 
(Kurtoglu, Tumer, and Jensen 2010; Jensen, Tumer, and 
Kurtoglu 2008). FFIP uses a functional modeling approach 
based in a function block diagram structure (Stone and Wood 
2000). FFIP can be enhanced in order to enable mission 
control, navigation, and autonomous decision making 
through the application of Failure Flow Decision Functions 
(FFDF) (Short, Lai, and Van Bossuyt 2017; Short, Van 
Bossuyt, and others 2015). FFDF is a tool that determines an 
optimal decision when faced with problems of controlling or 
designing a system in order to maximize system 
survivability. Specific to the case study employed in this 
paper, space mission risk assessment can also be applied to 
control of autonomous systems in order to maximize mission 
success while minimizing human work hours (Short and Van 
Bossuyt 2015; Mimlitz, Short, and Van Bossuyt 2016; Short, 

tetS l-=)(

tetStF l--=-= 1)(1)(



4 

Mimlitz, and Van Bossuyt 2016; Friedenthal, Moore, and 
Steiner 2014; Mohaghegh, Kazemi, and Mosleh 2009; 
Kumamoto and Henley 1996).  

While many of the existing methods are robust, they suffer 
from lengthy setup and analysis processes. The heavy 
computational cost of these existing methodologies makes 
active mission assessment previously infeasible.  

2.3. Prognostics and Health Management  

Prognostics and Health Management (PHM) is a suite of 
analytical tools and methods used to predict and prevent 
failures in mechatronic systems (Sheppard, Kaufman, and 
Wilmering 2014).  There are diverse approaches to PHM that 
are typically tuned to specific applications or industries 
(Hutcheson et al. 2006; Balaban et al. 2013). A common 
PHM case study for development of models is battery health 
(Xing et al. 2011). Much research has been conducted on the 
important issues of battery capacity depletion (Saha and 
Goebel 2009), optimization of battery life (Saha, Quach, and 
Goebel 2012), generation of battery health data [37], and 
application of battery PHM analysis (Saha et al. 2011). While 
battery health is a common case study, partially due to the 
large quantity of available data (Saha and Goebel 2007) and 
partially a result of general acceptance within the field, the 
methods and techniques are generalizable to a wide variety of 
systems and applications such as electrical actuators (Keller 
et al. 2006), transmissions and gearboxes (Zhang and Isom 
2011), and other components and systems (Pecht 2008).  

PHM analysis can be used to inform a decision with the 
optimum level of risk through Prognostic-enabled Decision 
Making (PDM) (Sweet et al. 2014; Herr, Nicod, and Varnier 
2014; Nathalie, Nicod, and Varnier n.d.).  PDM is a valuable 
method in health management of complex systems because it 
allows a succinct modeling of potential damage caused by the 
failure of a subsystem or individual part. Some PHM 
techniques model not only the mechatronic system itself, but 
also the physical interactions it encounters, such as mobility 
and environmental interface, control systems, structural 
actions, and hazards (Balaban et al. 2013; Frost, Goebel, and 
Obrecht 2013). In this paper, we extend PHM methods to 
include the consideration of humans as additional subsystems 
which to our knowledge has not been done before.   

3. METHODOLOGY  

The AMSE method presented here is based on a nested super-
system approach to space mission risk assessment that allows 
for the active estimation of mission success during an 
ongoing mission. By using techniques derived from 
functional modeling of systems, FFIP, and related methods in 
conjunction with concepts taken from decision theory, risk 
analysis, and PHM, AMSE is capable of providing useful 
insights when making mission control decisions by rapidly 
analyzing potential options when confronted with 
unanticipated and previously unanalyzed scenarios. In this 

section, we present the AMSE method using a case study of 
a Mars mission.  First, two pre-steps are presented, then three 
primary phases (modeling, analysis, and interpretation) are 
shown.  

Pre-Step 1: Mission Success Definition 
In order to glean insight from AMSE, both a definition of 
mission success and a quantifiable method for evaluating 
success must first be established. In many cases, mission 
success can be defined as a primary system (or systems) of 
interest surviving the length of the mission. One example of 
a system of interest surviving the length of a mission is a 
planetary exploration rover remaining functional for the 
entire duration of the planned mission. In order to determine 
the probability of survival of a primary system of interest and 
the related probability of mission success, a survival rate 
must be calculated. A survival rate, 𝑆(𝑡), tends to take the 
form of a Cumulative Distribution Function (CDF) 
representing the probability that the system of interest will 
not have experienced a failure by time, t. One common form 
for a survival rate is the exponential survival rate which is 
found by subtracting the exponential failure rate, 𝐹(𝑡), from 
1 as shown in Eq. 5. The exponential failure rate is found by 
taking the integral of the Probability Density Function (PDF) 
form of the exponential failure rate, 𝑓(𝑡), which determines 
the probability that a failure will occur at the instant, 𝜏, given 
a hazard rate, 𝜆, which is the number of expected system 
failures over time. Equations 3, 4, and 5 define 𝑓(𝜏), 𝐹(𝑡), 
and 𝑆(𝑡) respectively (Pinto and Garvey 2012). These and 
other forms of failure distributions, such as system specific 
PHM models, are an integral part of the AMSE methodology 
and necessary for the development of failure models.  

𝑓(𝜏) = 𝜆𝑒+,-       (3) 

𝐹(𝑡) = 1 − 𝑒+,0 = ∫ 𝜆𝑒+,-	dτ0
5    (4) 

𝑆(𝑡) = 𝑒+,0 = 1 − (1 − 𝑒+,0)   (5) 

Pre-Step Two: Functional Model Development 
The AMSE method requires a series of functional models to 
represent every major system involved in the mission, as well 
as their individual behavioral and system health 
characteristics.  We used the FBED method of functional 
modeling because it clearly represents energy, material, and 
data flows.  PHM information that can be collected from 
systems in real-time must be identified in this step built into 
the functional model where applicable.  This information is 
encoded into the mathematical models developed below.  

3.1. Phase 1: Modeling  

In Phase 1 of the AMSE method, seven distinct steps are 
performed to develop the AMSE model.  Figure 1 graphically 
shows the seven steps.  
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3.1.1. Step 1: Create a nested functional model of the 
mission.  

The first step consists of creating a metamodel of all major 
mission systems (previously modeled in the pre-steps above) 
within a nested super-system framework. This is performed 
by first modeling each individual system using traditional 
FBED methods (Pre-Step 2), before placing the individual 
systems into a nested super systems structure. An example 
functional model of a Surface Exploration Vehicle (SEV) can 
be seen in Figure 2. A graphical representation of the AMSE 
nested super systems structure for a Mars crewed surface 
exploration mission can be seen in Figure 3. In Figure 3, the 
outermost “system” is the space environment in the solar 
system that contains the Sun, Earth, Mars, and a 
communications satellite.  Mission Control is defined as part 
of the Earth “system”. The SEV, the Martian Surface Habitat, 
and the EVA suit are located within the “Mars” system.  
Within the EVA suit, the astronaut is found.  Thus, the 
astronaut (the system of interest in the case study presented 
in the next section) is inside three larger systems. Under this 
method, flows can pass between systems while crossing the 
boundaries of environmental or protective systems such as an 
SEV, space suit, or the Martian surface habitat module. This 
allows for the entire system to be modeled and to represent 
environmental hazards and various levels of protection that 
prevent and mitigate system failure. Additionally, the effects 
of the current health of each layer of protection on the system 
of interest can be determined through application of PHM and 
risk analysis models and information (identified in pre-step 
2) for each individual system.  

  
Figure 1: Phase 1, Modelling, Process Flow 
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3.1.2. Step 2: Define Critical System(s) of Interest and 
Critical Flows 

In the case of a functional model of a single system, critical 
functions and flows are defined as elements of the functional 
model that must be operational for the system to not be in a 
failure state (Lucero et al. 2014). In the context of super 
systems representing a mission framework, the idea of critical 
functions and flows is extended from the functional level to 

the system level, and a critical system of interest is defined. 
A critical system (or systems) of interest is a system that must 
be functioning in order for the mission to be considered not 
failed. For example, in the case of a rover mission, the critical 
system of interest is the rover, and for the case of a crewed 
space mission, each member of the crew is considered a 
critical system of interest.  Step 2 concludes once the critical 
system(s) has been identified and defined. 

3.1.3. Step 3: Develop Mathematical Models to 
Represent Graphical Functional Models, Their 
Health, Failure Distributions, and How Failures 
Relate to Each Other  

The third step of the AMSE method consists of developing a 
mathematical model to represent the graphical functional 
model, and risk and PHM information developed in the 
second Pre Step. This mathematical model serves as the 
computational basis of analysis of the system. Building on 
previous work on failure analysis and PHM in functional 
models, the logic by which failure propagates can be 
described and analyzed (Short, Lai, and Van Bossuyt 2017; 
Short, Van Bossuyt, and others 2015).  

In the AMSE method, it is important to assign failure 
distributions to systems and accurately represent how failure 
is passed between systems (Upadhyay 2010). These failure 
distributions will describe the instantaneous hazard rate of the 
system. PHM  condition-based failure distributions must be 
selected that are dependent on the flows passed into and out 
of the system, and often are dependent on the time over which 
the system is utilized (though not exclusively, and could be 
dependent on resources such as the flow of cooling fluid at 
appropriate levels or available energy). Additionally, for 
systems for which PHM models have not been developed, 
several common forms of failure distributions can be used, 
such as the Weibull distribution, normal distribution, and the 
exponential distribution (Upadhyay 2010). However, for 
many systems, more complex prognostic health models have 
been developed and can be integrated into the math of the 
system models (Goebel et al. 2008; Saha et al. 2009; Gao, 
Liu, and Dougal 2002; Daigle et al. 2011).  

Once the individual systems have been analyzed in order to 
determine how failure will propagate (Jensen, Tumer, and 
Kurtoglu 2015; Kurtoglu and Tumer 2007; Short, Lai, and 
Van Bossuyt 2017), the entire nested super system assembled 
in Step 1 can be modeled. The super system model is 
constructed in the same manner as a single functional model, 
but with systems in the place of sub-systems. The end product 
is a mathematic representation of a risk-informed functional 
model that can track the passage of flows between all mission 
systems and actively reported an estimated system health.  

3.1.4. Step 4: Define a Mission Plan  

A mission plan is used in AMSE to develop future scenarios 
for automatic mission success probability calculation.  The 

 
Figure 2: Functional Model of an SEV 

 
Figure 3: Nested Super Systems Functional Model 
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mission plan includes the planned operations and objectives 
to be completed over the course of a mission. We suggest that 
the mission plan start loosely with only primary mission 
objectives and milestones defined at first, and then the 
secondary objectives and operations that must be completed 
in order to facilitate the performance of objectives can be 
developed. For use with AMSE, the mission plan is then 
broken down further into actionable items that can be 
completed by systems in the mission. These actionable items 
are referred to as “tasks” for the rest of this paper. Examples 
of tasks for a rover include driving a specific distance, 
performing a scientific operation, or performing 
communication with Earth. For the case of a crewed space 
mission, tasks may include EVAs, the performance of 
experiments, or health-related tasks such as eating and 
sleeping.  

3.1.5. Step 5: Develop Task Modules  

Task modules are important to develop for the AMSE method 
because AMSE uses tasks to automatically plan how mission 
objectives can be completed when analyzing potential 
decision choices.  Tasks modules include the duration that a 
task is to be performed, all systems and resources used during 
the task, and any fatiguing or consumption of systems 
affecting the health of systems that may occur during 
completion of the task. This information will be necessary for 
analyzing the mission in Phase 2 of AMSE. Appendix 1 lists 
several typical mission tasks, and associated resource and 
system health cost parameters.   

3.1.6. Step 6: Organize Tasks into a Task Plan  

Using the task modules generated in Step 5, the next step is 
to organize the task modules into a task plan that defines 
typical operations or schedules that are to be followed within 
the mission plan. For example, a task plan can represent all 
of the tasks to be completed on a particular type of day, such 
as a day that an EVA is to be performed by a crew member. 
Additionally, a typical week can be assembled from task 
plans for days and made into a larger meta-task plan. The 
bundling of task modules into task plans allows for more 
rapid reconfiguration of the system model for analysis by 
AMSE by allowing the mission controller or astronaut 
performing the analysis to quickly assemble a typical period 
of time to include into the analysis.  

3.1.7. Step 7: Arrange Task Plans to Align with the 
Mission Plan  

The general mission plan defined in Step 4 is now filled in 
with task plans developed in Step 6. This enables the analysis 
of the mission using AMSE by providing a time-discretized 
list of all of the actions and systems that are to be used for 
completion of the mission as a whole.  Figure 4 shows how 
task modules are assembled into task plans and then arranged 
to align with the mission plan. 

While each of the seven steps of Phase 1 must be completed 
prior to using AMSE, and the initial modeling can involve a 
large time investment, though once many of these steps have 
been performed they do not have to be performed again. If 
the model needs to be reconfigured in order to account for an 
unforeseen circumstance or to iterate on the mission design 
(in the case of using AMSE for mission design rather than 
mission operations), adjustment of the models developed in 
Step 3 or reconfiguration of the Task Plans in Step 6 can 
account for the majority of changes that may need to occur to 
the mission plan and its constituent parts. Due to the ease of 
configurability enabled by initial up-front investment of time 
and resources in model building, AMSE models are able to 
be reconfigured rapidly to adjust to unforeseen circumstance 
or examine a variety of options in order to inform a mission 
control decision.  

3.2. Phase 2: AMSE Analysis  

As with Phase 1 of AMSE, the second phase, analysis, 
requires the investment of time and resources to generate the 
mission models for analysis.  Unlike Phase 1, Phase 2 only 
must only be setup once and will be run whenever the 
evaluation of a new mission model is desired. The majority 
of the math necessary for Phase 2 was already developed 
from Step 3 of Phase 1 where the mathematical representation 

 
Figure 4: Organization Structure of Tasks 
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of the mission was developed. The performance of Phase 2 
takes the form of execution of an algorithm consisting of 
eight individual steps. The eight steps that comprise the Phase 
2 algorithm are detailed below. A flowchart of Phase 2 
algorithm can be seen in Figure 5. 

3.2.1. Step 1: Step Through Mission Plan 

Starting with the earliest task that has not yet been analyzed, 
select each task and then perform Steps 2 through 5 on them. 
This is necessary to analyze how the success rate of the 
mission develops over time.  

3.2.2. Step 2: Calculate Resource Cost of Task and PHM 
Effects 

Any resources consumed or systems fatigued by the 
completion of the task must be accounted for. One 
implementation of this is a resource matrix that contains how 

much of each resource is available, and subtract from the 
matrix as resources are consumed. A similar approach can be 
utilized for the tracking of system health from mechanical 
wear, environmental conditions, or energy usage.  

As an example of Step 2 of the algorithm, the model for 
kilocalories used by an astronaut during the performance of a 
task is displayed in Eq. 6, where k represents kilocalories 
used, p represents physical exertion required to perform a 
task on a scale of 0 to 10, where sleep is a 0.5 and vigorous 
exercise is a 9.5, 𝑑	represents the duration of the task in 
hours, and 𝑤 represents the astronauts current weight in 
kilograms (“Appendix 2. Estimated Calorie Needs per Day, 
by Age, Sex, and Physical Activity Level - 2015-2020 
Dietary Guidelines - Health.Gov” n.d.).  

𝑘 = (𝑝 ⋅ 0.8556 + 0.5622) ⋅ 𝑤 ⋅ 𝑑   (6) 

3.2.3. Step 3: Calculate Hazard Rates Presented to 
Critical System of Interest 

Utilizing the mathematical system model with health 
information developed in Phase 1, calculate what the risk of 
system failure is for completion of the task. We recommend 
calculating the risk in the form of an instantaneous hazard 
rate, 𝜆(𝜏), representing the number of system failures 
expected at the instant 𝜏.  

3.2.4. Step 4: Record Hazard Rates 

A matrix containing hazard rates for the systems of interest 
and the time at which the hazard rate was reached should be 
generated. This will be necessary for the calculation of a total 
mission failure and success rate in later steps. The matrix 
values for the first three sols spent on Mars for one of the 
astronauts in the case study presented in this paper is reported 
in Appendix 2.  

3.2.5. Step 5: Repeat Until Complete 

If tasks still exist in the mission plan that have not yet been 
analyzed, return to Step 1 of Phase 2. If all tasks in the 
mission plan have been completed, then continue on to Step 
6 of Phase 2.  

3.2.6. Step 6: Calculate Total Mission Hazard Rate 

The mission hazard , ΛC(𝑡), rate defines how often failure is 
to be expected while executing a mission. For the case study 
presented, failure is defined as the loss of human life during 
a space mission. However, for a manufacturing process, it 
could be shutting down the production line or the generation 
of product that doesn’t meet quality standards.  

Taking the instantaneous hazard rates generated from the 
functional models and real-time PHM information developed 
in Steps 2 and 3, calculate the total hazard rate for the 
remainder of the mission time as a function of time over the 
entire length of the mission. Like the instantaneous rate, 

 
Figure 5: Phase 2, Analysis, Process Flow 
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𝜆C(𝜏), the total mission hazard rate, ΛC(𝑡), describes the 
number of expected system failures per unit of time. While 
this can be found using integration of continuous data, for the 
purpose of discretized data generated in completing the 
AMSE method, a weighted average can find the total mission 
hazard rate. This is found by summing the product of the 
instantaneous hazard rate for a task and the duration of a task, 
Δ𝜏, and then dividing by the total mission length, T, minus 
the current time of the mission (Eq. 9). 

Formulation 1: 𝚲𝐚(𝐭), Formulation of Hazard Rate    
Here we provide the mathematical formulation for  ΛC(𝑡), the 
hazard total rate presented to a critical system of interest from 
an environmental or internal hazard over the remaining 
course of the mission HIJKKLK	JM	NOK0LP

PQKKQJR	
S.  

Formulation 1.1: Sets 
𝜀 ∈ 𝐸: Set of all Tasks in a Task Plan  

𝜀 ∈ 𝐸0: Set of all uncompleted tasks in the task plan after 
time, 𝑡 

ℎ ∈ 𝐻: Set of all hazards faced by the system of interest    

ℎ ∈ 𝐻𝜀: Set of all hazards presented to a critical system of 
interest, 𝑠, in the completion of task, 𝜀 

𝑎 ∈ 𝐴: set of all critical systems of interest in a system 

 𝑝𝑎ℎ ∈ 𝑃: Set of all parameters used to calculate hazard rates 
in PHM based failure distribution, 𝑅, for system, 𝑎 [various 
units] 

Formulation 1.2: Parameters  
𝑇 =Total planned mission length [hours] 

Δ𝜏𝜀 = Time elapsed during the completion of a task, 𝜀  
[hours] 

Formulation 1.3: Variables   
𝜏 =Instantaneous time in the mission [hour]  

𝑡 =Time elapsed since mission start [hours] 

Formulation 1.4: Calculation 
The hazard rate for an individual hazard,	ℎ, is found by 
inputting the appropriate parameters into the PHM based 
failure distribution, 𝑅. 

𝜆𝑎_ = 𝑅(𝑝ℎ𝑖) H
𝐿𝑜𝑠𝑠𝑒𝑠	𝑜𝑓	𝑆𝑦𝑠𝑡𝑒𝑚

ℎ𝑜𝑢𝑟	𝑒𝑥𝑝𝑜𝑠𝑒𝑑	𝑡𝑜	ℎ𝑎𝑧𝑎𝑟𝑑
S (7) 

 

The total hazard rate presented to a critical system of interest, 
𝑠, during a task, 𝜀, is: 

𝜆𝑎(𝜀) = i 𝜆𝑎ℎ
𝒉∈kl

		m
𝐿𝑜𝑠𝑠𝑒𝑠	𝑜𝑓	𝑆𝑦𝑠𝑡𝑒𝑚

ℎ𝑜𝑢𝑟	
n 

(8) 

  

The combined hazard rate presented to all critical systems of 
interest, 𝑠, for the remainder of the mission, is given by: 

ΛC(𝑡) =
∑ 𝜆C(𝜀) ⋅𝜺∈qr Δ𝜏s

𝑇 − 𝑡 		m
𝐿𝑜𝑠𝑠𝑒𝑠	𝑜𝑓	𝑆𝑦𝑠𝑡𝑒𝑚

𝑀𝑖𝑠𝑠𝑖𝑜𝑛	
n 

(9) 

 

3.2.7. Step 7: Calculate Probability of Mission Survival 
Over Time  

In this step, calculate the probability of mission survival over 
time, 𝑆C(𝑡), for a critical system of interest, 𝑎, using the total 
mission hazard rate as shown in Equation 10. In the case of a 
single critical system of interest, 𝑆C(𝑡), is equivalent to the 
total mission probability of success, 𝑃KvwwLKK. However, in 
the case of multiple critical systems of interest, 𝑃KvwwLKK is 
equivalent to the intersection of the probability of mission 
survival, 𝑆C(𝑡), for all systems as shown in Equation 11 
Formulation 2 below. 

Formulation 2: (𝑷𝒔𝒖𝒄𝒄𝒆𝒔𝒔) Formulation of Probability of 
Mission Success  
Here we provide the mathematical formulation for (𝑃KvwwLKK), 
the probability of total mission success  
[𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙	𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑝𝑒𝑟	𝐴𝑡𝑡𝑒𝑚𝑝𝑡].  

Formulation 2.1: Sets 
𝑎 ∈ 𝐴: set of all critical systems of interest in a system  

Formulation 2.2: Parameters  
𝑇 =Total planned mission length [hours] 

Formulation 2.3: Variables   
𝑡 =Time elapsed in the mission so far [hours] 

Formulation 2.4: Calculation 
The Probability of survival for a single critical of interest,	𝑠, 
is calculated for planned mission time remaining, 𝑇 − 𝑡  

𝑆C(𝑡)

= 𝑒+��(�)⋅(�+�) m
𝑆𝑦𝑠𝑡𝑒𝑚𝑠	𝑆𝑢𝑟𝑣𝑖𝑣𝑒	𝑀𝑖𝑠𝑠𝑖𝑜𝑛

𝐴𝑡𝑡𝑒𝑚𝑝𝑡
n 

(10) 

 

The probability of total mission success is calculated for 
mission time, 𝑡 

𝑃KvwwLKK(𝑡) =�𝑆C(𝑡)
C∈�

		m
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙	𝑀𝑖𝑠𝑠𝑖𝑜𝑛𝑠

𝐴𝑡𝑡𝑒𝑚𝑝𝑡
n (11) 
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3.2.8. Step 8: Display Results 

Finally, results of the AMSE analysis are presented in a 
human-readable form to support decision-making. In order to 
make the results of the AMSE analysis human readable, the 
instantaneous hazard rate and survival rate for an individual 
critical system of interest should be plotted, as well as the 
probability of total mission success over time. This provides 
a quick visual check of how the probability of mission 
success develops over time, as well as providing insight on 
any task or period of time that may be adversely affecting the 
probability of mission success. Additionally, it may be 
helpful to plot system- and hazard-specific values in order to 
determine what degraded system health states may be leading 
to less-than-desired mission success probability that need to 
be directly addressed. Viewing the results of the analysis in 
this way allows for easier interpretation of the results, 
troubleshooting of low-success-probability mission plans, 
and allows prognostics-enabled decisions to be made by 
human operators that better consider how system health 
develops over time.  

Similar to Phase 1, the initial setup of Phase 2 can be time 
intensive, but after it is set up the first time it is unlikely to 
require any additional work be performed and it should be 
applicable to any model generated in Phase 1.  

3.3. Phase 3: Interpretation of Results  

Phase 3 of the AMSE method consists of interpreting the 
results of the analysis from Phase 2. This phase is difficult to 
break into concise steps as it is less procedural, and instead 
aims to generate mission decision or design insight that is 
informed by analysis and is model- and mission-specific. 
However, there are some general guidelines that can be 
applied to most cases that a practitioner might encounter.  

One important metric to observe is the probability of mission 
success at the beginning of the mission, 𝑃KvwwLKK(0), or the 
probability of total mission success over the entire span of the 
mission from beginning to end. This metric is important 
because it describes the total probability that a mission will 
be successful including all tasks, systems, expected 
environmental conditions, and other health-affecting factors 
over the entire mission plan. Additionally, it should be noted 
that 𝑃KvwwLKK(𝑡) at time 𝑡 = 0 is the lowest that it will ever be 
during a nominal mission because it includes all of the risk 
from all of the tasks that are to be completed.  

One way to conceptualize 𝑃KvwwLKK(0) is as the probability 
that a speeding driver will be pulled over by the police during 
a long trip. At the beginning of the drive, there exist the most 
opportunities for the driver to be pulled over. However, over 
the course of the trip the number of remaining chances to be 
pulled over decreases, because there is less of a distance left 
to traverse, and therefore, less of a chance that the speeding 
driver will be caught. 

Additionally, it should be noted that 𝑃KvwwLKK(𝑡) approaches 
1 as time remaining in the mission approaches 0. It is 
important to keep this in mind, especially in high-risk 
missions that appear to become more successful near the end 
of the mission. This line of thought constitutes a fallacy in the 
way the model is viewed as the higher probability of survival 
near the end can only be achieved if a low probability of 
survival is completed near the beginning. Additionally, it is 
important to understand how a single high-risk mission task 
could drastically lower all of the mission success estimation 
before the task is completed. For example, if a mission is 
conducted where all mission tasks have a 100% probability 
of success, except for one task that has a 10% chance of 
success but presents no long-term system health effects, the 
probability of mission success will be only 10% until after 
the task is completed.  

An important consideration when working with AMSE is 
properly defining expected and acceptable levels of risk early 
in the process and realistically considering the consequences 
of possible outcomes. If a manufacturing process has a 70% 
chance that each product will pass quality checks, then that 
may be acceptable in some cases. However, a 70% chance of 
loss of life is generally unacceptable. Digging into the model 
and seeing how it responds to a wide variety of foreseeable 
issues before they come up is advisable because this will help 
to inform the decision maker’s general attitude and may will 
allow operators to address problems before they arise.  

Finally, if uncertain parameters are used in the creation of the 
model sensitivity analysis should be performed. This will 
inform the operator of potential biases and shortcomings their 
model could have based on assumptions about the 
performance of individual sub-systems.  

4. CASE STUDY  

A case study is presented in this section of a hypothetical 
space mission to establish a permanent research settlement on 
the Martian surface using simple and widely available 
models. This approach allows for the more direct evaluation 
of the AMSE methodology as a decision support tool, while 
using the case study as a framework for the evaluation of 
AMSE’s effectiveness and responsiveness.  

The planned mission consists of two crews consisting of four 
female astronauts each arriving at the same site 26 months 
apart. The time horizon of the mission begins with the arrival 
of the first crew, Crew Alpha, and continues up to their 
departure after 1070 Martian sols. This time horizon was 
selected so that the comparatively high-risk activities of 
accent and descent from orbit would not affect the analysis, 
and the focus can remain on surface operations and the 
demonstration of AMSE. The second crew, Crew Beta, is 
also analyzed with AMSE, but the primary focus of the case 
study is on Crew Alpha.  
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4.1. Crew Composition  

Each crew consists of four female astronauts who are all 
approximately 170 cm tall and range from 60 to 65 kg. The 
reason behind sending an all-female crew is that it cuts down 
on the quantity of food necessary to sustain their health and 
allows for more shared resources such as commonly sized 
space suits or Extravehicular Mobility Units (EMUs). This 
idea has been proposed in the past by a variety of individuals 
including participants in the NASA Hawaii Space 
Exploration Analog and Simulation (HI-SEAS) test (“HI-
SEAS Mission 3 | Solar System Exploration Research Virtual 
Institute” n.d.; Greene and Oremus 2014).  

In order to model human crew survival from a functional 
perspective, models of the Martian environment and the 
necessary conditions for human life are developed. Critical 
information used in the development of the model is 
presented in Sections 4.2 through 4.5.  

4.2. Human Requirements to Live in Space  

Humans operating in space environments requires external 
life support systems to continue living and to be able to 
perform work tasks. The major requirements for sustained 
human survival in space include: temperatures between 4-35o 
C, 0-0.5% atmospheric carbon dioxide by volume, 35-350 
kPa ambient pressure,  radiation dose below 15 roentgens per 
year (“Environment of Manned Systems” n.d.), 2 liters of 
water per day (Gleick 1996), access to 34 essential nutrients 
(Nutrition n.d.),  and a minimum of approximately 1300 kcal 
per day (“Appendix 2. Estimated Calorie Needs per Day, by 
Age, Sex, and Physical Activity Level - 2015-2020 Dietary 
Guidelines - Health.Gov” n.d.). 

On Mars, threats to maintaining human life include: exposure 
to radiation, surface storms, and exposure to the very low 
atmospheric pressures and temperatures. On the Martian 
surface, ambient pressures averages 0.6% of Earth sea-level 
pressure, atmospheric composition consists of over 96% 
carbon dioxide (“Mars Fact Sheet” n.d.), mean surface 
temperatures are approximately -63oC, and raw surface 
radiation exposure is upwards of 1000 times greater on the 
surface of Mars than Earth (Plante and Lee 2005).  

4.3. Human Exploration of Mars and Site Selection 

Current NASA deep-space mission planning methodology is 
heavily reliant on materials acquired at the site through the 
process of In Situ Resource Utilization (ISRU) (“NASA :: 
S&MS:: In Situ Resource Utilization (ISRU) Element” n.d.). 
For this reason, NASA has compiled a series of parameters 
that are ideal for a Mars base site. A decision matrix, 
compiled by the First Landing Site/Exploration Zone 
Workshop for Human Missions to the Surface of Mars, lists 
two primary criteria categories: 1) Scientific Merit and 2) 
ISRU/Engineering criteria.  The engineering criteria consider 
foundational factors such as water supply and the presence of 

plant micronutrient minerals that are foundational to a long-
term human presence. The optimal ISRU/Engineering 
selection criteria were used as the primary criteria for site 
selection. 

The principal location risk was deemed to be dust storms. 
These have typically originated in the southern hemisphere 
during or around perihelion, and Martian summer (Barnes 
1999). Dust storms can reduce visibility over the entire 
planet, making navigation difficult for astronauts during an 
Extra Vehicular Activity (EVA). Additionally, dust can also 
compromise solar power generation.  Evidence for surface 
lightning has also been observed, which could affect power 
systems (Ruf et al. 2009).   Dust storms occur at an average 
rate of 7.1 storms per Martian year (Beish and Recorder n.d.), 
and are generally more intense in the southern hemisphere 
(Cantor, Malin, and Edgett 2002).  Thus, the Northern 
Hemisphere is preferable for colonization. 

The planned Mars mission utilizes solar power (Do et al. 
2016).  While average insolation is greater at the poles, it is 
more consistent at the Martian equator [29].   An average 
insolation of 200 W/m^2 occurs around the Martian equator. 
A peri-equatorial site would therefore be best for power and 
agricultural performance.   

Within these criteria, NASA has listed a few potential landing 
sites for un-manned missions that exhibit fluvial features and 
possible hydraulic soil infiltrates for ISRU water reclamation. 
The list includes the Mawrth Vallis and Nili Fossae sites. 
Martian surface spectroscopy data [30] suggests that the 
essential micronutrients and minerals vital to the growth of 
most plants [45] can be found in Martian soil.  For this 
simulation, it is assumed that all inorganic plant 
micronutrients are present at the chosen Martian Sites. 

4.4. Nutrition Requirements 

The most important long-term life support risk to humans on 
any deep space mission is nutrition, because food is the 
greatest one-time consumable by mass after fuel. Lifting 
mass out of orbit is extremely costly, thus the total supply of 
food that can be taken into space is limited.  Additionally, the 
biosphere in which most food is grown is arguably one of the 
most complicated systems yet documented; artificial 
replication is very prone to catastrophic cascading failure 
(MacCallum, Poynter, and Bearden 2004). Therefore, a high 
risk of starvation exists due to food production being prone 
to failure, and food carrying capacity at launch being 
extremely limited.    

The US Food and Drug Administration defines 34 key macro 
and micronutrients essential to human survival (Food, 
Administration, and others 2014).  In addition to the Daily 
Recommended Value (DRV), each macro and micro-nutrient 
has an approximate biological half-life. In order to 
consolidate this information into a more concise metric, an 
index of criticality was developed as shown in Equation 12. 
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This ratio inflates for both high-intake requirements and 
quick biological half-lives, yielding a metric whereby the 
largest numbers represent the most critical nutrients. 
Conveniently, this criticality index also indicates which 
micronutrients are practical to bring from Earth as 
supplements. This index was used to categorize the nutrients 
that would be more efficient to produce in situ on Mars. 
Again, high-mass requirements for some consumables, such 
as carbohydrates, protein, fat, and other macronutrients, 
restrict the efficiency of supplying such materials from Earth.  
All macronutrients, namely carbohydrates, fat, protein, and 
dietary fiber can only be efficiently produced on site (Do et 
al. 2016). It was found that the most critical nutrients are 
carbohydrates, protein, dietary fiber, and fat. 

Crops were selected using two criteria: the aforementioned 
nutrient criticality index, and growing time.  Ultimately, 
potatoes, soybeans, sweet potatoes, wheat, and peanuts were 
chosen as the primary crops. Various other crops were 
considered as well for their rich micro-nutrient production 
including: cabbage, tomato, bell pepper, spinach, cucumber, 
kale, garlic, onion, and broccoli. Additionally, it should be 
noted that several vitamins and minerals are principally 
animal products and will be assumed to be brought along 
from launch as dietary supplements.  These include 
cholesterol, vitamin D, Vitamin B12, Vitamin H (biotin), and 
iodine.   

4.5. Included Model Systems and Resources 

In addition to the models of the astronauts, two Martian 
surface habitat modules, two SEVs, and twelve total space 
suits are included (6 space suits brought by Alpha Crew and 
6 space suits by Beta Crew). The modeled systems are broken 
down further into sub-systems such as those for power 
generation, life support, in-situ resource utilization, or waste 
management in the case of the habitats. For instance, the 
model for the habitat examines PHM relevant data such as 
the quantity and intensity of physical work performed, power 
consumption, load on the life support systems, time of 
exposure to the Martian environment, and accumulated 
fatigue from the use of the habitat airlock. Another system for 
which a model was developed is the SEV, which models the 
hazard rates of wheel failure, battery loss, mechanical fatigue, 
and general health effects from exposure to the Martian 
environment. Equations 13 through 16 show the distributions 
used for the hazard rates for tires, power, mechanical fatigue, 
and environmental damage. Equation 17 shows how the 
combined SEV failure hazard rate is found.  

𝜆�_LL� = 6 ⋅ 𝜆�_LL�	

= �
����	

⋅ �0������
����

�
�
𝑒+(0������ ����⁄ )¡ 

HL¢£Lw0L¤	MCQ�v�L
_Jv�

S 

(13) 

𝜆£J�L� =
�

¥�55
⋅ �

¦§¨§©�
¥�55

�
�
𝑒+ª¦§¨§©� ¥�55⁄ «¬ 

HL¢£Lw0L¤	MCQ�v�L
_Jv�

S 

(14) 

𝜆PLw_ =
�

����
⋅ �∑­⋅0®

����
�
¥
𝑒+(0������ ����⁄ )¯ 

HL¢£Lw0L¤	MCQ�v�L
_Jv�

S 

(15) 

𝜆L¢£J =	
�

�5555
⋅ �0°�±±�²�+0°���r

�5555
�
�
𝑒+(0°�±±�²�+0°���r �5555⁄ )¡ 

HL¢£Lw0L¤	MCQ�v�L
_Jv�

S 

(16) 

𝜆Nq� = 𝜆�_LL� + 𝜆£J�L� + 𝜆PLw_ + 𝜆L¢£J 
HL¢£Lw0L¤	MCQ�v�L

_Jv�
S 

(17) 

The SEV allows for greater mission scientific yield through 
expanding the range of EVAs, but is not necessary for 
preserving health, so Weibull distributions are fit to desired 
failure rate characteristics. These distributions can be 
replaced with more system-specific PHM models in order to 
increase model accuracy in exchange for minimal 
computational cost.  However, for the purposes of the case 
study—namely to demonstrate AMSE—the models 
presented above are sufficient. The hazard rate for the SEV’s 
wheels, 𝜆�_LL�, is dependent on the time that the SEV is 
driven on the Martian surface, 𝑡¤�Q³LR , and models six wheels 
designed to last two whole mission lengths before 
replacement. The SEV’s battery health, 𝜆£J�L�, is dependent 
on the number of battery charge cycles, 𝑄wOw�L, with the 
equivalent cycles of five missions before failure. A larger 
number of missions before expected failure was used because 
replacement of the SEV battery would be more time- and 
resource-intensive than the replacement of the wheels. The 
SEV’s general mechanical failure rate, 𝜆PLw_, is dependent 
on the intensity at which the SEV is driven, 𝐼, and the time 
driven at intensity, 𝑡­, with two mission cycles at expected 
intensity before failure. The SEV’s failure from exposure to 
the Martian environment, 𝜆L¢£J, is dependent on the time that 
has elapsed since the last general maintenance operation, 
𝑡PQKKQJR − 𝑡PCQR0 , with the equivalent time between 
maintenance of 350 Martian sols. 

Additionally, a variety of consumable resources are brought, 
such as food and the supplies necessary to start a farm in order 
to generate food and become Earth independent. The crops 
brought along include soybeans, potatoes, peanuts, wheat, 
and sweet potatoes. The selection of these crops is informed 
by previous studies, but new calculations are performed to 
estimate the volume of each crop to grow including updated 
nutritional information for crops and metabolic model for 
caloric intake (Do et al. 2016; Jones 2000). These crops are 
chosen for their ability to meet DRV for necessary macro-
nutrients and provide a variety in the diet. The crops are 
grown in a vertical farming unit attached to the Martian 
habitats. It is assumed that the Martian habitats are deployed 
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before the arrival of the crews and only final verification 
operations must be performed upon arrival. 

4.6. Mission Plan  

The plan consists of eight stages. The stages are defined as: 
1) Alpha arrival and setup 2) Starting Farm Alpha 3) Alpha 
primary exploration window 4) Preparation for arrival of 
Beta 5) Start Farm Beta 6) Crew Beta arrival and setup 7) 
Cooperative scientific window between Alpha and Beta, and 
8) Preparations for departure of crew Alpha. On a typical day, 
crew members will get 8.6 hours allocated for sleep/hygienic 
activities, 2 hours for food preparation and eating, 2 hours for 
exercise, 1 hour for farming, and then the remaining time split 
between Intra-Vehicular Activities (IVA) and Extra-
Vehicular Activities. IVAs refer to any scientific, 
maintenance, or other task that is performed within the 
Martian surface habitat module that is not described by 
another category. EVAs refer to any activities performed in 
an outside of the habitat while wearing an EMU. This 
includes tasks that involve the use of the SEVs. EVAs are 
performed on a rotating nine-sol schedule which can be seen 
in Table 1. On days where an EVA is performed it is typically 
an 8-hour EVA. The remaining time of the day is dedicated 
to IVA. 

A segment of the mission plan can be found in Figure 6; the 
complete mission plan can be seen in Appendix 3.  

4.7. AMSE Cases  

In order to evaluate AMSE’s ability to inform mission design 
and decision making through functional modeling, several 
examples of mission crises that may occur were considered 
and modeled in AMSE.  For the purpose of this 
demonstration of AMSE, it is assumed that these crises were 
not previously predicted and analyzed. The primary systems 
of interest for all crises considered are the astronauts and their 
survival is considered the metric for mission success. 
Additionally, loss of crew members has the potential to lead 
to loss of mechanical systems, as it reduces the crew 
capability to maintain and repair systems, potentially leading 
to cascading failure. Due to its high speed, AMSE is 
primarily useful in supporting decision-making in real-time 
for scenarios that were previously unpredicted or un-
modeled. 

4.7.1. Inaccurate Mission Calculations  

The first crisis to be considered in the case study is the 
response to a faulty assumption or calculation performed in 
the mission planning stage.  Previous robotic missions to 
Mars have been lost due to incorrect calculations (Board 
1999). The example considered is that the estimations for 
time spent performing tasks are inaccurate and as a result, the 
expected caloric intake necessary is much lower than the real 
needs of the astronauts.  

In this case, the initial estimate for the area to allocate to crops 
is 35 m2, 40 m2, 85 m2, 65 m2, and 4 m2 for soybeans, 
potatoes, peanuts, wheat, and sweet potatoes respectively, in 
order to serve a caloric demand of 2565 kcal per person per 
day. However, in reality, each astronaut burns 3025 kcal per 
day in the case study. Crises related to food production and 
nutrition are of particular interest due to the high impact on 
mission success and the potentially limited ability to respond 
due to inability to easily send more food if needed. 
Additionally, nutrition-based crises provided a good test case 
for AMSE’s ability to model human survival as part of a 
PHM problem.  

Using only the resources available to them on Mars, Crew 
Alpha must determine a way to compensate for the 
discrepancy between their available caloric sources and their 
actual caloric requirements.  

 
Table 1: Crew EVA schedule over a Nine-Sol period 

 

Crew Member Sol 1 Sol 2 Sol 3 Sol 4 Sol 5 Sol 6 Sol 7 Sol 8 Sol 9
A EVA EVA EVA
B EVA EVA EVA
C EVA EVA EVA
D EVA EVA EVA

 
Figure 6: Sols 0 through 615 of the General Mission 
Plan 

 

 

• Sol 0 

o Crew Alpha Arrives on the Surface  

o Perform EVAs and IVAs to verify critical Martian 

Surface Habitat functionality  

o Unpack transit vehicle  

o Set up habitat module  

• Sol 1-5 

o Perform EVAs to validate external less critical functions 

o Begin Setup for experimentation and  

o Start farm  

• Sol 6-130 

o Tend to farm  

§ Sol 55: Soybeans mature 

§ Sol 67: Wheat mature 

§ Sol 75: Potatoes mature  

§ Sol 125: Sweet potatoes mature  

§ Sol 130: Peanuts mature 

§ Sol 130: Self-sufficient food source achieved  

o Perform EVAs on regular schedule 

o Perform IVAs on regular schedule 

o Perform Exercise on regular schedule  

• Sol 131-615 
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4.7.2. Inability to Farm  

Due to the criticality of food to the mission success (Weir 
2011), a second food inspired case is also considered. In this 
case, a correct 3025 kcal per day assumption is made during 
mission planning and enough emergency backup food is 
planned for triple the time estimated to start the farm and 
become food self-sufficient (405 sols). However, due to 
unknown reasons, none of the crops grow and Crew Alpha 
must wait for Crew Beta to arrive with more food on sol 770. 
With no ability to generate more food, Crew Alpha must 
explore options to improve their probability of survival using 
AMSE to inform their decisions.  

4.7.3. Broken Arm  

The mission plan contains many tasks that must be completed 
and these tasks are initially distributed in order to maximize 
the probability of mission success. However, there are a wide 
variety of situations that may necessitate a reallocation of 
tasks, such as the performance of EVAs, to other crew 
members. This can have potentially dire consequences, 
because it increases the average caloric load on other 
astronauts which can lead to nutritional issues as well as 
increasing the potential exposure to harm, increased wear on 
assigned EMUs, and increased radiation exposure.  

In order to use this class of problems as an example of 
AMSE’s utility, it is considered that a member of Crew Alpha 
breaks her arm on sol 771 when she falls from a ladder in the 
farm. Analysis using AMSE is performed in order to 
determine how work should be reassigned in order to give 
them the necessary time (approximately 70 sols) for their arm 
to heal with minimal effects on the mission health. 
Additionally, in order to maintain desired scientific yield and 
continue to perform appropriate maintenance actions on 
mechanical systems work must be reassigned to ensure no 
EVAs are canceled.  

5. RESULTS AND DISCUSSION 

For each of the cases described above, an initial round of 
AMSE is performed for the model of the crisis and then 
options are explored until an acceptable level of mission 
success is achieved. Acceptable levels of success include 
situations in which the total probability of mission success 
over the entire span of the mission does not go below 95% or 
a case in which no individual’s probability of survival goes 
below 98% for the mission.  

5.1. Inaccurate Mission Calculations  

For the case of inaccurate mission calculations, a mission 
plan is created that vastly underestimated the quantity of food 
that is necessary for the survival of the crew. The initial 
mission plan yields a probability of mission success of 0.5% 
with the mean probability of survival for each crew member 
being only 26.6%. The results of the analysis are shown in 

Figure 7. Over the length of the mission, the average weight 
of the astronauts’ decreases from 62.50 to 47.99 kg which 
presents a serious danger from starvation and malnutrition.  

 

Allowing for the possibility that Crew Alpha could use the 
farm section from Crew Beta’s habitat in order to grow more 
food, and that Crew Beta can bring along a third farm unit, a 
solution is found after 1 iteration of AMSE that achieves a 
probability of mission success of 95.9%. Under this 
configuration of the mission, 50 m2, 60 m2, 115 m2, 90 m2, 
and 5 m2 are allocated for soybeans, potatoes, peanuts, wheat, 
and sweet potatoes respectively. This plan also allows for all 

 

 
Figure 7: Inaccurate Caloric Needs (top) Instantaneous 
Survival Rate, (bottom) Mission success over time 
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planned work to be continued normally without disruption. 
The results of the analysis are shown in Figure 8.  

5.2. Inability to Farm  

Similar to the first case, the inability to farm presents a risk 
from starvation. In this case, only 405-sols worth of rations 
are brought along to support a 3025 kcal/day diet. Again, 
Crew Beta is able to adjust what they bring along in order to 
help solve the problem. However, Crew Beta does not arrive 
until sol 770, well after the point of starvation if no other 
mitigating actions are taken. The success and survivability 
plots for this case are presented in Figure 9.  

 

                                                        
1 This assumes no self-sacrifice or other extreme solutions. 

If no action is taken, then the probability of mission success 
is effectively 0% due to the astronauts starving to death 
around sol 4501.  

The first option that investigated involves rationing the food 
to evenly split portions across all 770 sols, which while still 
insufficient in total calories, at least keeps the food from 
running out. However, it is found that just rationing the food 
leads to loss of crew due to starvation sooner due to them 
being malnourished earlier on by dramatically reducing 
intake of calories, but not reducing their need caloric usage. 
The associated plots can be found in Figure 10. 

 

 

 

 

 
Figure 8: Inaccurate Caloric Needs with Larger Farm 
(top) Instantaneous Survival Rate, (bottom) Mission 
success over time 

 

 

 
Figure 9: Inability to Farm (top) Instantaneous Survival 
Rate, (bottom) Mission success over time 
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AMSE is performed again, and again the reserve of food is 
rationed to extend available food as long as possible, but all 
EVAs and exercise are canceled, and the rest/sleep period is 
extended from 8.6 hours per day to 16.6 hours per day. While 
this approach completely halts any planned scientific 
endeavors, it is enough to keep from dramatic weight loss, 
and the probability of mission success (defined as keeping the 
astronauts alive) increases to 92.99% with a mean individual 
survival probability of 98.2%. This is considered a sufficient 
solution given the constraints of the problem. The associated 
plots for this mission plan can be found in Figure 11.  

 

 

 

 

 

One potential consequence of this strategy is that the crew’s 
ability to respond to additionally crises is severely limited, 
and taking any actions could potentially lead to starvation. 
This is compounded by the canceled EVAs and reduced 
IVAs, which has numerous effects on the health of physical 
systems that require scheduled maintenance. For example, 
when the EVAs are canceled the SEVs are likely to 
accumulate damage from ordinary Martian weather leading 
to reduced system health and a higher probability of system 
loss. While the SEVs are not critical to mission survival and 
their failure does not affect mission success, the potential 
scientific yield of the mission is limited after rescue by Crew 
Beta is limited by their loss.   

5.3. Broken Arm  

The broken arm problem investigates what occurs if someone 
becomes temporarily incapacitated. In this case, astronaut A 
of Crew Alpha is unable to perform EVAs for 70 sols 
beginning on sol 771. EVAs are required to be performed by 

 

 
Figure 10: Inability to Farm with Rationing (top) 
Instantaneous Survival Rate, (bottom) Mission success 
over time 

 

 

 
Figure 11: Inability to Farm with Extra Rest (top) 
Instantaneous Survival Rate, (bottom) Mission success 
over time 
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two astronauts at a time in the mission plan in order improve 
EVA safety. However, if EVAs are canceled scheduled 
system maintenance tasks and scientific opportunities are 
reduced. In order to keep up scientific yield, the EVA 
schedule is temporarily revised to the one shown in Table 2.  

 

This leads to no significant reduction in the probability of 
mission success, with a probability of success of 95.9%. The 
resulting associated plots can be seen in Figure 12. 

While this adjustment in task planning doesn’t seem to have 
a significant influence on the probability of mission success, 

it does have some effects on the individual astronauts that 
may result in potential consequences. For example, over the 
course of the mission, astronauts B, C, and D end up being 
exposed to an additional 0.2 mSV of radiation, which is 
equivalent to receiving two chest x-rays.  

For this case, we considered the astronaut completely 
incapacitated for the purpose of EVA’s, but their other work 
assignments remained the same.  

5.4. Discussion of Results 

In the cases presented above, AMSE is used to make risk-
informed space mission control decisions. In each case, the 
mission model is reconfigured within several minutes and 
analysis can be run in under 80 seconds. This allows for rapid 
response to mission crises. The selected crises for the case 
study were relatively simple with fairly apparent solutions, 
but each selected case was representative of a different class 
of space mission crisis that may be encountered. The 
selection of simple cases was intentional in order to focus on 
the demonstration of the AMSE as a method for risk-
informed space mission decision-making.   

In the initial investigation of the risk-informed space mission 
model used for this study, it was found that the probability of 
mission success was very highly dependent on nutrition of 
the astronauts, and that maintaining a healthy astronaut and a 
productive mission would be a difficult balancing act. 
Additionally, if the quantity of work is increased, even 
temporarily, the caloric load can be thrown greatly out of 
balance. On Earth, this would not be a significant problem, 
because more food can be acquired, but on Mars, additional 
food could take several years to arrive as flight times are 
highly dependent upon launch windows. This observation 
was part of the inspiration for having multiple cases that 
focused on food-related crises.  

The uniqueness of AMSE in providing a decision-support 
tool that uses real-time system health information to help 
mission operations managers in rapidly developing 
unanticipated scenarios positions AMSE to be a useful 
addition to space missions.  The underlying system models 
that provide risk analysis capability are directly modified by 
PHM information from the physical systems.  In the case of 
the case study, the systems are simulated; however, we have 
conducted initial testing on a PHM testbed platform with 
promising results. 

While the case study focused on crises that were relatively 
easy to avert, the AMSE method is capable of handling much 
more complicated system failure scenarios. The limiting 
factor of the AMSE method’s ability to model and analyze a 
mission is the availability of computational resources and the 
resolution of the developed mission model.  

 

 
Figure 12: Broken Arm with Revised EVA Schedule 
(top) Instantaneous Survival Rate, (bottom) Mission 
success over time 

 

Crew Member Sol 1 Sol 2 Sol 3 Sol 4 Sol 5 Sol 6 Sol 7 Sol 8 Sol 9
A
B EVA EVA EVA EVA
C EVA EVA EVA EVA
D EVA EVA EVA EVA

Table 2: Revised EVA Nine Sol Schedule 
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5.5. Generalization of the Method  

While the presented case study focuses on space mission 
control decisions, the AMSE method can be used to make 
decisions for the design and management of a wide variety of 
systems. As demonstrated in the case study, AMSE can be 
used to model traditional engineering systems, such as 
electrical and mechanical systems; however, AMSE has been 
demonstrated to handle less traditional biological systems 
and environmental systems.  

One concept that is important to understand when it comes to 
generalizing AMSE to problems outside of space mission risk 
assessment is the concept of missions and mission success. 
While in the demonstrated case study a very traditional 
definition of mission is used, a mission is any series of tasks 
that are necessary for the completion of a goal, dependent on 
the state of systems for completion, and chronologically 
ordered. One example of this could be the design and 
production of a chair. This model could include human 
designers, computer systems, tools for manufacture, human 
craftspeople, and could even extend to transit systems for 
delivery. The objective that defines success for this system is 
delivery of the correct number of chairs to a buyer (though 
secondary conditions of human safety could also be 
considered). A nested super system model of the entire 
process could be developed, and tasks could be defined that 
account for everything that must be done in production. 
AMSE could then be used to explore potential problems in 
production, as well as used in crises to determine potential 
solutions to problems as they arise, while maintaining a long-
term big picture view of success.  

6. CONCLUSION AND FUTURE WORK  

Active Mission Success Estimation (AMSE), is a method for 
the modeling and analysis of space missions for the purpose 
of risk analysis and informed decision making based on real-
time PHM information. The bulk of the AMSE method 
consists of three phases. The first phase of AMSE is 
modeling. In this phase, a functional model of the mission 
containing PHM information is developed using a nested 
super-systems approach in order to represent multiple 
interacting mission components. In addition to the functional 
model of the system, a mission plan is developed that 
contains a list of all tasks to be performed over the course of 
the mission. The tasks are represented by task modules, 
which contain quantitative information and mathematical 
models necessary to analyze the effect of the task on the 
health of systems within the mission framework. The second 
phase of AMSE, analysis, utilizes the functional model of the 
system and the mission plan in order to perform calculations 
to determine the probability of mission success over time. 
This phase is highly dependent on analysis of the system 
health models developed in Phase 1. The third and final phase 
of AMSE involves the interpretation of the results of the 
analysis in order to inform mission control decisions.   

The AMSE method is shown to be an effective tool for risk-
informed PHM-driven decision making using analysis 
conducted on functional models representing real systems. 
This is demonstrated through the evaluation of three potential 
crises that could occur during a space mission. Future work  

Through the case study, AMSE shows its ability to be rapidly 
reconfigured in highly detailed ways.   

6.1. Future Work  

AMSE is a promising tool for risk-informed mission risk 
analysis and decision making, but is currently limited in its 
user-friendliness and lacks any form of GUI or developed UI 
and instead relies on the user to make changes to the code 
performing the analysis. While this is doable it is a non-ideal 
implementation and it vastly reduces the ability for AMSE to 
be used by new people. Therefore, development of a GUI for 
the AMSE code to be run through is given a high priority.  

Another area for improvement on AMSE is in the sourcing of 
functional models which include PHM data and health 
modeling. Currently, models must be developed for each 
system that is to be included in the nested super systems 
framework. However, a database or design repository could 
be developed of common models for use in AMSE. This 
would enable the more rapid creation of mission model and 
improved configurability speeds by allowing for more rapid 
interchanging of systems or sub-systems.  

A final avenue of interest for future investigation is the use 
of AMSE with an Artificial Intelligence (AI) in order to 
enable autonomous decision making under risk. For the case 
study presented in this paper a human was able to try multiple 
solutions to the problem scenarios relatively quickly, 
however, as the problems get bigger and more complex they 
could become impossible for a human to manage. However, 
if an autonomous decision maker was developed that could 
efficiently use AMSE to respond to crises and find multiple 
potential solutions we could vastly reduce the time needed to 
find a solution to a problem. Developing better methods for 
autonomous decision making in hazardous and unknown 
environments could have applications in a wide variety of 
fields including, self-driving cars, home robotics, national 
security, and space exploration.  
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APPENDIX 1 

 
  

Task Duration (sec) Systems Used Resources Used Quantity
Time Inhabited 30960 (sec)

Physical Intensity 0.5/10
Time Inhabited 7200 (sec) Calories Burned ~2.8 (kcal/kg)*Astronaut Weight (kg)

Physical Intensity 1.0/10 Food Eaten 3025 (kcal) Gained
Time Inhabited 7200 (sec)

Physical Intensity 9.5/10
Time Inhabited 3600 (sec) Calories Burned ~4.4(kcal/kg)*Astronaut Weight (kg)

Water Used ~20 (L/m2 of Crops Being Grown)
Food Produced ~8.4 (kg/day) At full production 

Air Lock Uses 2
Time Inhabited 28800 (sec)

Physical Intensity 3.0/10
Time Inhabited 3600 (sec)

Physical Intensity 1.7/10
Time Inhabited 10800 (sec)

Physical Intensity 1.3/10

~25(kcal/kg)*Astronaut Weight (kg)

Habitat Module Calories Burned ~5(kcal/kg)*Astronaut Weight (kg)10800

Calories Burned

IVA

4.5/10

EVA 28800

EMU

SEV

Maintain 
Farm

3600
Farm Module Physical Intensity

Habitat Module

Eat Food 7200

Sleeping

Exercise Calories Burned ~17.4 (kcal/kg)*Astronaut Weight (kg)7200

System Health Factors

Habitat Module
30960 Calories Burned ~8.5 (kcal/kg)*Astronaut Weight (kg)

Habitat Module
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APPENDIX 2 

  



APPENDIX 3 

Mission Plan  

• Sol -770 
o Crew Alpha Equipment Arrives on Planet  

• Sol 0 
o Crew Alpha Arrives on the Surface  
o Perform EVAs and IVAs to verify critical 

Martian Surface Habitat functionality  
o Unpack transit vehicle  
o Set up habitat module  

• Sol 1-5 
o Perform EVAs to validate external less 

critical functions 
o Begin Setup for experimentation and  
o Start farm  

• Sol 6-130 
o Tend to farm  

§ Sol 55: Soybeans mature 
§ Sol 67: Wheat mature 
§ Sol 75: Potatoes mature  
§ Sol 125: Sweet potatoes mature  
§ Sol 130: Peanuts mature 
§ Sol 130: Self-sufficient food 

source achieved  
o Perform EVAs on regular schedule 
o Perform IVAs on regular schedule 
o Perform Exercise on regular schedule  

• Sol 131-615 
o Perform EVAs on regular schedule 
o Perform IVAs on regular schedule 
o Perform Exercise on regular schedule  

• Sol 616-620 
o Begin verification of Beta Martian Surface 

Habitat during EVAs  
o Perform IVAs on regular schedule 
o Perform Exercise on regular schedule  

• Sol 621-769 
o Sol 621 

§ Begin Farm Beta 
o Tend to Farm Beta 

§ Sol 671: Soybeans mature 
§ Sol 688: Wheat mature 
§ Sol 696: Potatoes mature  
§ Sol 746: Sweet potatoes mature  
§ Sol 751: Peanuts mature 
§ Sol 751: Self-sufficient food 

source achieved  
o Perform EVAs on regular schedule 
o Perform IVAs on regular schedule 
o Perform Exercise on regular schedule  

• Sol 770 
o Crew Beta Arrives on surface 

§ Perform EVAs and IVAs to verify 
critical habitat functionality  

§ Unpack transit vehicle  
§ Set up habitat module 

• Sol 771-775 
o Crew Alpha 

§ Perform EVAs on regular 
schedule 

§ Perform IVAs on regular 
schedule 

§ Perform Exercise on regular 
schedule  

o Crew Beta  
§ Perform EVAs to validate 

external less critical functions 
§ Begin Setup for experimentation 

and  
• Sols 776-1050 

o Crew Alpha 
§ Perform EVAs on regular 

schedule 
§ Perform IVAs on regular 

schedule 
§ Perform Exercise on regular 

schedule  
o Crew Beta 

§ Perform EVAs on regular 
schedule 

§ Perform IVAs on regular 
schedule 

§ Perform Exercise on regular 
schedule  

• Sols 1051-1069 
o Crew Alpha 

§ Begin Prep for departure 
§ Wrap up experiments 
§ Perform EVAs to hand off tasks 

to Beta 
§ Prepare habitat Alpha for vacancy 

• Will be used by Crew 
Gamma   

o Crew Beta 
§ Perform EVAs on regular 

schedule 
§ Perform IVAs on regular 

schedule 
§ Perform Exercise on regular 

schedule  
• Sol 1070 

o Crew Alpha Departs from Martian Surface  
o End AMSE analysis 

• Sol 1540 
o Crew Gamma arrives and moves into 

habitat Alpha 

 


