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ABSTRACT

Global concerns about climate change and resource man-
agement have escalated the need for sustainable consumer prod-
ucts. In light of this, sustainable design methodologies that sup-
plement the product design process are needed. Current research
focuses on developing sustainable design curricula, adapting
classical design methods to accommodate environmental sus-
tainability, and sustainability tools that are applicable during
the early design phase. However, concurrent work suggests that
sustainability-marketed and innovative products still lack a re-
duction of environmental impact compared to conventional prod-
ucts. Life cycle assessment (LCA) has proven to be an excep-
tional tool used to assess the environmental impact of a realized
product. However, LCA is a reactive tool that does not proac-
tively reduce the environmental impact of novel product con-
cepts. Here we develop a novel methodology, the PeeP method,
using historical product LCA data with kernel density estima-
tion to provide an estimated environmental impact range for a
given product design. The PeeP method is tested using a se-
ries of case studies exploring four different products. Results
suggest that probability density estimations developed through
this method reflect the environmental impact of the product at
both the product and component level. In the context of sustain-
able design research, the PeeP method is a viable methodology

for assessing product design environmental impact prior to prod-
uct realization. Our methodology can allow designers to identify
high-impact components and reduce the cost of product redesign
in practice.

1 INTRODUCTION
Sustainable product design is defined as the consideration

of the three tenets of sustainability (ecological, economic, and
social) impact during product development. Sustainable prod-
uct design, specifically Design for the Environment (DfE), con-
tinues to be an emergent topic in engineering design and a
growing concern in novel product development. The Sustain-
able Market Share Index, published by the Center for Sustain-
able Business, suggests that the sustainable product market has
grown from 88.2 billion USD to 113.9 billion USD from 2013 to
2018 [1]. Furthermore, sustainability-marketed products make
up 54.7 percent of consumer goods market growth, while only
making up 16.1 percent of the consumer goods market share
[2]. These trends suggest that today’s consumer is becoming
more sustainability-aware and shifting purchasing habits toward
sustainability-marketed products. Unfortunately, many adopted
DfE methods rely on reactive tools such as life cycles assessment
in iterative approaches after a product has been fully realized.
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Tools like life cycle assessment require a finalized product de-
sign where manufacturing methods, transportation logistics, and
material selection are defined. In practice, engineering designers
lack robust proactive tools for the consideration of environmental
impact during the early design phase.

In engineering design research, several methods have been
introduced to promote sustainable product design earlier in con-
cept development. The popular Theory of Inventive Problem
Solving (TRIZ) method for creative problem solving has been
adapted to enabling sustainable product design [3]. Eco-design
tools, such as the GREEn Quiz (Guidelines and Regulations for
Early design for the Environment), allow designers to explore
sustainable design guidelines early in the design phase [4–6].
Recently, there has been interest in improving environmental re-
sponsibility education in engineering design curricula [7]. How-
ever, designers are still struggling to make meaningful shifts to-
ward environmentally-friendly product design. This is evident
in recent research which suggests that eco-labeled products and
innovative products can fail to be more sustainable than the con-
ventional alternatives they are replacing [8, 9].

Here we aim to contribute to the growing research area of
sustainable design methods by introducing a Probabilistic ap-
proach for Estimating the Environmental impact of Product con-
cepts, termed the PeeP method. The PeeP method uses kernel
density estimation with a product repository and historical prod-
uct LCA data to estimate the environmental impact range of a
product, based on the designer-supplied bill of materials. Using
Monte Carlo sampling, the PeeP method generates sample data
points representative of each component’s environmental impact
on the supplied complete or incomplete bill of materials. Finally,
through kernel density estimation, probability density functions
are presented for each component and the overall product con-
cept, denoting the ranges of the probable environmental impact
of the design and the contribution by each component. In this pa-
per, we demonstrate and validate the PeeP methodology through
the use of sourced design repository data and four example prod-
uct concepts.

2 BACKGROUND

The PeeP method described in this paper leverages repos-
itory data used to drive sustainable product design. However,
the data requirements for the PeeP method are approachable and
can be satisfied with other data sources that a design may have
access to. The foundations of the PeeP method rely on back-
ground knowledge of data-driven product design, design repos-
itories, component naming standardization, sustainable product
design, research in life cycle assessment, and probability estima-
tion.

2.1 Data-Driven Product Design
Data-driven product design has been at the forefront of prod-

uct development research for the last decade. ’Big Data,’ in tan-
dem with data-mining, allows designers to make design decisions
based on intuition supported by evidence parsed from datasets.
[10–12]. Wang et al. mined product review data using sentiment
analysis to capture emotive response gaps between design inten-
tion and consumer preference [13].Zhang et al. also used senti-
ment analysis on reviews to understand potential pain points of
cellular phone design, indicating areas of improvement [14]. The
current literature in data-driven design most commonly uses text
mining, sentiment analysis, and available customer data [15–19].
However, other data sources have been used in data-driven prod-
uct design.

Kong, Li & Zheng characterized areas of mass product cus-
tomization using expert knowledge and patent data [20]. San-
gelkar 2012, leveraged association rule mining against expert
knowledge and product data to identify changes in user activ-
ity between universal and conventional products [16]. Yan & Xu
2007, used support vector machines with design-time data to pre-
dict design times for plastic mold [21]. Generated data has also
been used to create decision trees for cellular phone configura-
tion design [22].

In previous literature, there is an abundance of generated
(i.e., the researchers use algorithmically generated data that rep-
resents real data) or collected user data (i.e., parsed from online
websites or surveys) used in data-driven product design. How-
ever, there is an under-representation of ’real’ prior product data
used in data-driven product design methodologies. The proposed
PeeP method moves the data-driven design state-of-the-art to-
ward employing product data from evolving product databases.
By developing a methodology considering supplied product data
flexibility, the PeeP method is repeatable and useful given a va-
riety of source data.

2.2 Design Repositories and Knowledge Discovery
Design repositories house design data to provide knowledge

to the end-user [23, 24]. Given concerns about intellectual prop-
erty, there is a lack of available and robust design repositories
available to researchers and industry alike. Efforts have been
made to encourage the adoption of such databases by publish-
ing research demonstrating repository standardized schemes and
methodologies that streamline repository utilization. [25–27].
Despite weak adoption, novel design repositories are still being
introduced in research [28]. For demonstrating the PeeP method,
we use the Oregon State University Design Repository (OSDR)
and the Oregon State Sustainable Design Repository(SDR), both
of which have been extensively employed in academic research
and are consistently curated and maintained [29–31].

Design repository research primarily focuses on using repos-
itory data to inform and expand current function-based design
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theories. One such effort has been to use design repository data
to aid in and automating concept generation [32–34] from func-
tional modeling. Functional modeling is a design tool used in the
early design phase to describe the function relationships required
to meet the design requirements of a product concept. Func-
tional modeling is often completed without the need of explicit
design decisions. Leveraging functional-based design as a bridge
to the early design phase, Soria et al. introduced a methodology
for identifying human error by using functional modeling. This
method was tested with repository data [35,36]. In related work,
automate functional modeling has been explored through the use
of the Oregon State University design repository [37]. The pri-
mary goal of this work is to utilized automated functional assign-
ment to aid in Design-for-X (DfX) methodologies [38]. Design-
for-X is defined as the specialize approach toward meeting a spe-
cific design objective (X). Though these methods look to apply
Design-for-X (DfX) objectives to the early design phase through
function, these methods often only used design repository data in
validation. There is a lack of leveraging the repository product
data in primary knowledge discovery, as opposed to secondary
uses such as case study facilitation.

Design repositories specifically are potential candidates
for applying the theory of Knowledge Discovery in Databases
(KDD) [39–41]. As in, repositories can provide the necessary
’big data’ required in modern data-mining approaches. However,
modern data-mining methods are reliant on extensive and com-
plete knowledge data sources. To explore this space, Williams
et al. discuss design repository effectiveness as a data source
for neural networks [42]. For advanced knowledge discovery
methods, modern repositories may not provide accurate results.
In contrast, there is still a need to explore novel methods that
do not directly rely on extensive data sets. The PeeP method
provides a stepping stone in research by using repository data
with probability-based knowledge discovery to draw conclusions
based on data available.

2.3 Component Naming Standardization

In addition to answering the need for standardized design
repository schema, recent research has defined how to standard-
ize the data within the repository structure. Research has in-
troduced standardization for naming functions within a func-
tional decomposition and when describing component functions
[43–45]. This standard terminology is called functional-basis
terms. Future work expanded the functional basis terms to in-
clude a new basis terms list to describe components [46]. Our
proposed methodology capitalizes on this research by renaming
common-named components with component basis terms. The
component basis standardization reduces data noise introduced
by user-defined common component names.

2.4 Life Cycle Assessment (LCA)
Life Cycle Assessment is a method of determining the to-

tal life-cycle sustainability impacts of a process, system, or de-
sign [47, 48]. Though methods exist to estimate social and fiscal
sustainability, LCA is primarily used to explore environmental
sustainability [49,50]. LCA works by taking life cycle inventory
data, processing the data through an LCA methodology, and dis-
playing numerical results that can be used to interpret the sustain-
ability of a product. In practice, LCA is used to compare prod-
ucts, systems, and processes. There are several LCA method-
ologies, most notably ReCiPe, TRACI, and CML [51–53]. The
use of standardized LCA methods is facilitated through LCA
programs such as SIMAPRO or GaBi [54, 55]. Life Cycle As-
sessment remains a foundation tenant in sustainability-based re-
search. However, LCA introduces research, practical, and utility
challenges.

A primary challenge for bringing Life Cycle Assessment to
the early design stage of product design is that LCA is a reactive
tool. LCA is often used to measure the impact of the product af-
ter the completion of the design process. This limits LCA as an
iteration tool, rather than a proactive tool to mitigate impact prior
to product realization. Other challenges include lack of geome-
try data, time investment, the ability to translate LCA indicators
intuitively, handling uncertainty in LCA, and how to address bias
introduced through assumptions [56–58].

In the areas of material and building development research,
LCA has been successfully used during design to mitigate im-
pact [59–61]. However, the use scenarios for buildings and ma-
terials are easily modeled using abundant existing historical data
with low uncertainty. For data-driven product design research,
proactive LCA-based methodologies are sparse likely due to the
complex assumptions needed for product LCAs and lack of avail-
able historical product-level LCA data. However, successful re-
search examples do exist.

In 2010, Bohm et al. demonstrated that design repositories
can be used to integrate LCA data into the early design phase
of product design. However, this method still relies on the man-
ual use of LCA methods [62]. In 2017, Arlitt et al. introduced
the Function-based Design for sustainability method (FDS). This
work provides introductory steps toward leveraging component-
level LCA, function, and component data to enhance sustainable
design knowledge during early product design. The FDS method
allows users to identify the most environmentally impactful func-
tions and clusters components that solve that function by en-
vironmental impact [63]. Marwah et al. also used clustering
with component level LCA data to estimate the impact of intro-
duced components based on likeness to components within clus-
ters [64]. Our proposed methodology aims to follow the state-of-
the-art by adding novel methodologies that bring LCA into the
early design phase while addressing some of the highlight issues
found in LCA driven research.
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2.5 Kernel Density Estimation
Kernel Density Estimation (KDE), realized by Emanuel

Parzen in the 1960s, is a non-parametric method for determin-
ing the probability density function of random variables [65].
The KDE method uses kernel functions to interpolate a density
function across a range of random variables. The kernel func-
tion determines the contribution of neighboring observations -
within the bandwidth or ’smoothing factor’- based on the dis-
tance, and determines the aggregated probability of the origin
data point. Today, kernel density estimation research has focused
on expanding the method to include multivariate capabilities and
optimizing bandwidth selection [66–70].

In related research, KDE is used as a powerful statistical
tool used in predictive and forecasting analysis, particularly in
the socio-geography space. Kernel density estimation is com-
monly used to predict crime and create crime ’hot spot’ maps
using weather, temporal, social media, demographics, and geo-
location data [71–74]. A conditional variant of KDE was used to
forecast electricity use through smart meter data and energy-cost
tariff models [75].

In the engineering design domain, KDE has been used to
track shape correspondence between two non-rigid 3D models
[76]. Reliability-Based Robust Design Optimization was com-
bined with KDE to developed probability density functions for
manufacturing uncertainty in electronic power steering motors
[77]. Kernel density estimation has also been leveraged to de-
termine the probability of environmental conditions surrounding
offshore wind turbines [78]. The results of this work are use-
ful in making structural decisions of wind turbine designs. Re-
cently, KDE has proven useful in modeling tolerances between
components [79]. Though the use of KDE is limited in the en-
gineering design space, our proposed methodology explores the
implications of KDE in such a field. PIn particular to the data-
driven product design, KDE is beneficial over classical proba-
bility methods such as Bayesian statistics. Product data is often
disparate, unbalanced, and sparse; thus, assuming a prior distri-
bution is challenging.

3 METHODS
Here we describe the novel probabilistic method for estimat-

ing the environmental impact of product concepts (PeeP). This
section includes data selection and processing, probability distri-
bution, meta probability distributions, and the assumptions and
limitations. Along with the description of the methodology, an
example case is discussed throughout this section. An overview
of the PeeP method is shown in Figure 1.

3.1 Data Selection and Processing
The data need for the PeeP method requires that the practi-

tioner have multiple consumer product product bills of material

FIGURE 1: PeeP method overview

(including component weight), along with Life Cycle Assess-
ments completed for each product. In industry practice, user-
supplied product data is ideally from the same product family.
This data is then subject to further processing as described be-
low.

3.1.1 Data Selection To facilitate the demonstration
of the methods presented here, we need to source specific product
information. The required product information includes prod-
uct name, bill of materials (in component basis terms), compo-
nent weight, and LCA impact data. Component basis terms are
selected to remove the variability caused by the common com-
ponent name. In this regard, component basis terms allow for
standardization of the components used in the PeeP method, as
presented in section 4.

For method validation, the prescribed data is sourced from
the Oregon State University Design Repository (OSDR) and Sus-
tainable Design Repository (SDR) [24, 30]. Using historical
product data from both repositories, a total of 44 products are
compiled into a data set. The sourced data set includes 487 com-
ponents as defined by 70 component basis terms. For each prod-
uct, the LCA software GaBi is used to determine the environmen-
tal impact of each product [55]. The sourcing of LCA data for
each product is subject to the assumptions made during the cre-
ation of the SDR. Succinctly put, the ReCiPe indicators were de-
termined under the assumption all products are landfilled, trans-
ported the same distance, and manufactured in the same loca-
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tions. In the demonstration, we chose to use the aggregated nor-
malized ReCiPe end-point indicator for environmental impact,
Species.yr [51]. Species.yr is the measure damage to ecosystem
diversity quantified by the loss of species during a year time in-
crement with consideration of terrestrial, freshwater, and marine
species loss. In practice, the approach described here can uti-
lize any number of LCA indicators from a variety of LCA tools.
Table 1 shows an example of the data sourced for demonstration.

3.1.2 Processing The sourced data needs to be pro-
cessed to create the needed and exhaustive probabilistic distribu-
tions. The data processing procedure begins by normalizing the
LCA indicators to the mass, mp, of the product, as shown in eq.
1.

LCAnorm = LCAproduct/mp (1)

Classically LCA is represented though functional units. How-
ever, LCAs of different products and sources are likely not to
share the same functional unit. The normalization of LCA,
LCAnorm, indicators by mass allows for the direct comparison
of the sourced historical product data without worry of disparity
in product size or functional unit definitions. The product LCA
indicator is reduced to impact per gram of product mass. Within
the normalized indicator, the components have a ratio of contri-
bution to the overall product LCA,LCAnorm. To develop this ratio
rc, the component mass mc is divided by the product mass.The
perceived component impact is calculated, shown in eq. 2, by
multiplying the normalized LCA indicator, LCAnorm, and com-
ponent mass ratio, rc.

LCAcomp = LCAnorm ∗mc/mp (2)

For each product, components are combined in tuples that
represent every combination of components found within a prod-
uct and the summation of their adjusted component impact, eq.
3 .

LCAtuple =
n

∑
i=1

LCAcompn (3)

This tuple combination allows for an increased number of prob-
ability distributions. Multiple probability distributions allow our
approach to anticipate and relate the user-supplied bill of materi-
als to similar combinations of components. The creation of more
data points allows for the account of percent similarity between
a supplied bill of material and the created distributions.

A final example of completed data is shown in table 2. Com-
ponent and component tuples, compared to the overall impact of

the product, are analogous to the impact of a product the compo-
nent is generally found. This data used to create the environmen-
tal impact meta-probability distributions of an incomplete bill of
materials. Component and component tuples as compared to the
normalized and adjusted component impact are used in probabil-
ity summation to create the impact meta probability distributions
of the known bill of materials.

3.2 Probability Distribution
The processed data points are grouped into clusters defined

by component basis name. The individual component clusters
are used as inputs for the KDE algorithm to provide probabil-
ity distributions for specific components and component clus-
ters. These distributions add an exhaustive approach to display-
ing knowledge for the end-user who may be only interested in
the impact of specific components and configurations of compo-
nents. Furthermore, the calculations of probability distributions
for component configurations can reduce the computation time
when compiling the meta-distributions outlined in section 3.3.

For the PeeP method, probability distributions are estimated
using the Kernel Density Estimation (KDE) method [65]. The
KDE method allows for estimation of the probability density
function given a set of independent and random variables that
have no known prior density distribution. The Kernel Density
Estimator is shown in, eq. 4,

f̂ (x) =
1

nh

n

∑
i=1

k
(

x− xi

h

)
(4)

where k is the kernel function and h is the bandwidth. For this
work, the kernel function is assumed to be Gaussian, shown in
eq. 5. The Gaussian function is chosen for convenience and
generally does not play a key role in KDE [80].

k(x) =
1√
2π

exp(− 1
2 x2) (5)

In contrast, the bandwidth parameter greatly influences KDE.
The bandwidth parameter, h, provides smoothing to the gener-
ated probability density function. If the bandwidth is too small,
the PDF is noisy, and the variables’ randomness is highlighted.
If the bandwidth is too large, the resultant PDf can be ’over
smoothed,’ and probabilistic features of the data can be lost. Re-
search is ongoing for optimizing bandwidth selection in the KDE
process [66]. For this work, the rule-of-thumb approach, Scott’s
Rule, calculates the optimum bandwidth factor [81]. The Scott’s
Rule bandwidth equation is shown in eq. 6, where σ is the stan-
dard deviation of the the observations and n is the number of
observations. The Scott’s Rule is selected for its popularity and
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TABLE 1: EXAMPLE PRODUCT DATA REQUIREMENTS FOR THE PeeP METHOD

Product ID Product Name Component Name Component Basis Weight (g) Product LCA (Species.yr)

830 Mech. Pencil Top Cap 1.20 3.92×10−10

830 Mech. Pencil Tip Insert 0.33 3.92×10−10

830 Mech. Pencil Spring Spring 0.11 3.92×10−10

830 Mech. Pencil Feeding Assembly Assembly 0.02 3.92×10−10

830 Mech. Pencil Tube Tube 5.87 3.92×10−10

830 Mech. Pencil Eraser Unclassified 0.54 3.92×10−10

830 Mech. Pencil Lead Unclassified 0.01 3.92×10−10

TABLE 2: EXAMPLE PRODUCT DATA LCA NORMALIZATION

Mechanical Pencil

ID Tuple Name Weight (g) Product LCA (Species.yr) Normalized LCA (Species.yr / gram)

1 Mech. Pencil 8.08 3.92×10−10 2.19×10−11

2 Top 1.20 3.92×10−10 3.25×10−12

3 Tube 5.87 3.92×10−10 1.59×10−11

... .... ...... ........ ......

9 Top + Tube 7.07 3.92×10−10 1.92×10−11

... .... ...... ........ ......

N Top + Tip ... + Lead 8.08 3.92×10−10 2.19×10−11

validation in research.

h =

[
24
√

πσ3

n

] 1
3

(6)

Overall, The KDE method is chosen due to the uniqueness
of the densities found within the data set. Within the example
data set used for method validation, it is clear that PDF for each
component varies greatly. One component probability distribu-
tion may exhibit normal behavior, while other components can
exhibit exponential or logarithmic distribution behavior. For cer-
tain, it can not be determined if any given standard probability
distribution model can define the supplied data set. KDE repre-
sents a robust method of estimating PDF regardless of the data
supplied and limits assumptions drawn by fitting distributions to
incomplete data sets.

3.3 Meta Probability Distributions

Probabilistic meta-distributions are generated to estimate the
potential impact of a product design given a completed or partial
bill of materials. The data used for the meta-distributions is gen-
erated through the summation of component cluster-related LCA
impact data representative of each component within the prod-
uct concept BOM. Using KDE, meta-probability density func-
tions are generated based on multiple components found within
the product concept BOM. In short, the meta-data used as in-
put to the KDE is a number of surrogate LCA-rich BOMs gen-
erated from the user-supplied product concept BOM. The cre-
ation of meta-data follows two different approaches depending
on the completeness of the supplies bill of material. The gen-
erated meta-data is used in KDE following the same equations
found in section 3.2.

For the completed bill of materials, surrogate BOMs are
generated by taking the Cartesian product of possible LCA im-
pact indicators per component and cluster found in the product
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concept BOM. Computationally, taking the Cartesian product of
a large bill of materials is taxing. A Monte Carlo sampling ap-
proach is used to limit the computation time needed to gener-
ate representative data. For each Monte Carlo iteration, several
surrogate BOMs are generated. For the initial surrogate BOM,
each product concept BOM component is randomly assigned a
normalized impact indicator as grabbed from the set of LCA in-
dicators representative of that component. To generated the re-
maining data points in the iteration, each similar product in the
data set is explored. A similar product is defined by sharing at
least two components with the provided complete bill of mate-
rials. The identified similar component cluster and related LCA
impact are added to a surrogate BOM. The remaining non-similar
component LCA impacts are randomly assigned akin to the first
data point generated. The meta-data is generated over many iter-
ations to create a surrogate BOM data set with a size governed by
eq. 7; where ep is the number of iterations and k is the number of
similar products. Finally, within each surrogate BOM, the com-
ponent cluster LCA impacts are summed to estimate the overall
weight normalized environmental impact of the bill of materials.

Nmetadata = ep×
(

xi +
k

∑
i=1

xk

)
(7)

During metadata generation, we can not assume that the his-
torical product data provided for the PeeP method is complete.
However, we do assert that clusters that make up multiple com-
ponents within the supplied BOM are more representative of the
potential impact of the product design, primarily if the supplied
data set is closely related to the supplied BOM product design.
As such, the LCA impacts related to similar products within the
data set are favored over using independent components to make
estimate environmental impact. However, in large data sets, this
may not always be helpful, especially in unique configurations
of components in novel product concepts, such is why a singular
component data point is generated.

For the partial bill of materials, Monte Carlo sampling is
used similarly, as mentioned before. However, here there is no
summation within the data point LCA impact indicators. The
partial bill of materials LCA impacts is calculated by the prod-
uct level non-normalized impact data related to each component
or component cluster, as in the representation of the impact of
the total product that a specific component or configuration of
components is likely to be found. Each defined metadata point is
internally averaged to determine the aggregated product’s envi-
ronmental impact of the product design given the limited bill of
materials.

3.4 Assumptions and Limitation
Due to the wide variety of components that fall into stan-

dard component basis terms, the final output for the normalized

data probability density distributions needs to be in terms of im-
pact over grams of product weight. The normalization is done
to remove the uncertainty related to using data sets that have a
bias toward defining classically ubiquitous components as high
or low impact. For example, the environmental impact of a hous-
ing component generally scales with the mass of the housing.
Bias can be introduced to the PeeP method by defining the PDF
for housings using only smaller products with less significant
housings. If a user then estimates the impact of a large prod-
uct with significant housing, the housing impact estimation will
be invalid. Unfortunately, the removal of this bias requires some
designer cognition to fully utilized the PeeP method with a com-
plete BOM. Meaning that if a designer has a completed BOM of
materials but does not know an estimation of the realized prod-
uct mass, the utility of the PeeP approach can be limited to being
only comparative. Though this may be the case, the knowledge
gained from using the PeeP method still carries utility. In this
regard, the PeeP method can still be used to scale product mass
to fit within defined environmental constraints.

The PeeP method does not account for material choice. The
perceived component impact is calculated under the assumption
that any component with the same weight is subject to the same
ratio of impact regardless of material choice. This assumption is
faulty as we know that metal-based manufacturing methods are
often more impact than polymer manufacturing. As such, the
PDFs are subject to data bias depending on the distributions of
materials within the source data. If the source data only has one
material type represented for a component, and the user intends
to make the component from a different material, the pdf can be
skewed. With a robust data set, this limitation is minimized with
the assumption that the PeeP method takes into account the com-
ponent’s general material distribution. The pdfs created from a
robust data set should have a bandwidth that accounts for many
material related impacts per component and represent the most
probable impact caused by the most probable material the com-
ponent is manufactured with.

The nature of estimating environmental impact given a par-
tial bill of materials introduces reasonable uncertainty to the
PeeP method. The component level PDFs are calculated under
the probability that the component is found in products with a
specific range of impact. The uncertainty of the probability of
impact given a set of known components leads to a significant
range of realized product impact. However, depending on the
completeness of the partial BOM, a user can use the normalized
meta PDFs as a sanity check to realize the representative impact
range that will apply to a given design.

4 Method Validation and Knowledge Navigation
This section highlights the demonstration of the PeeP

method and the exploration of knowledge that this method can
provide. A set of bill of materials are selected from the dataset to
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represents a variety of consumer products. These consumer prod-
ucts, Stapler, Mechanical Pencil, Apple Peeler Corer, and Game
Controller, represent BOMs of differing complexities. Table 3
shows the complete set of bill of materials for each product. Par-
tial bills of material are also tested to demonstrate the estimation
of environmental impact given incomplete design information.
We create partial BOMs from the previous complete BOMs by
removing any component that is not directly related to the prod-
uct’s primary function. For example, also shown in Table 3, an
incomplete bill of materials where the designer is sure of the me-
chanical pencil’s internal functional components but undecided
on any external components such as housing, grip, or clip.

The results of these examples are leveraged against a known
LCA indicator data of the validation products as sourced from the
OSDR and SDR. The following sections explore the accuracy of
the calculated KDEs for the completed and partial BOMs. Fur-
thermore, the sections will demonstrate how to interpret the PeeP
method’s results and explore the implications of the method.

4.1 Completed Bill of Materials
Figures 2-5, show the complete bill of materials KDE prob-

ability distribution functions for each example product shown in
table 3. Overall, we can observe that the generated probability
functions are robust enough to capture the tested products’ ac-
tual environmental impacts. Given this validation test case, the
ranges of environmental impact estimations appear to be wide
enough to capture products with uncertain embedded impact due
to various use phases, material choice, and geometry. A user can
explore the probable impact of a given product through the PeeP
method and prior knowledge of product BOM.

4.1.1 Mechanical Pencil We calculated the mechan-
ical pencil PDF by using 550 sample BOMs generated during
the data processing and sampling stage. The PDF provides en-
vironmental impact estimation within a range of [0×10−11 -
7×10−11] Species.yr per gram of product, Figure 2. The actual
impact of the mechanical pencil is 4.85×10−11 Species.yr/gram.
The multi-modal nature of the probability density function can
be attributed to the inclusion of two ’unclassified’ components
in the complete bill of materials. The ’unclassified’ components,
in this case, are the pencil lead and eraser. In general, due to
the wide variation of the environmental impact of ’unclassified’
components, the bill of materials that include such components
appear to have wider ranges of impact distribution.

4.1.2 Apple Peeler Corer Shown in Figure 3, the
Apple Peeler Corer (APC) KDE, generated with 1250 sample
BOMs, shows that the complete BOM should have an impact es-
timation range of [0.0×10−10 - 9.0×10−10] Species.yr / gram.
The actual impact of the APC is 4.92×10−11 Species.yr/gram.

FIGURE 2: Probability density function for the complete Me-
chanical Pencil bill of materials

While the APC PDF is smoother than the Mechanical Pencil
PDF, the range is of impact estimation is substantially larger.
Here we can observe the effects of a larger BOM when using
the PeeP method. The larger the bill of materials, the less varia-
tion is caused by individual components. However, larger BOMs
lead to larger ranges of estimated impact.

FIGURE 3: Probability density function for the complete Apple
Peeler Corer bill of materials
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TABLE 3: BILL OF MATERIALS FOR EACH TEST PRODUCT

Products

Mechanical Pencil Apple Peeler Corer Stapler Hand Dryer

ID CBOM PBOM CBOM PBOM CBOM PBOM CBOM PBOM

1 Assembly Tube Support Support Support Support Housing Housing

2 Tube Spring Shaft Shaft Support Guider Electric Motor Electric Motor

3 Cap Cap Link Crank Guider Container Fan Fan

4 Insert Assembly Latch Release Blade Container Spring Housing Housing

5 Spring Crank Nut-bolt Spring Seal Circuit Board

6 Unclassified Blade Blade Cover Circuit Board Heating Element

7 Unclassified Nut-bolt Support Cover Heating Element

8 Spring Handle Link Unclassified

9 Screw Spring Support

10 Link Fastener

11 Blade

12 Support

13 Handle

14 Screw

15 Handle

4.1.3 Stapler Shown in Figure 4, the Stapler KDE,
generated with 1400 sample BOMs, shows that the complete
BOM should have an impact estimation range of [0.0×10−10

- 9.5×10−10] Species.yr / gram. The actual impact of the sta-
pler is 3.98×10−11 Species.yr/gram. The PDF for the stapler
shows that there is no convergence of low probability till much
after the most probable peak between [0.0×10−10 - 2.5×10−10]
Species.yr / gram. We hypothesize that this is caused by the
BOM containing a large ratio of high occurrence, high variation
components, such as support and cover. This result is particu-
larly interesting as the PeeP method does not suffer from over-
fitting the data to the major distribution. In this case, the gener-
ated PDF suggests that the impact can safely be assumed to be
2.5×10−10 Species.yr/gram or under. However, the results high-
light that the user should carry special consideration for products
that have features that can lead to a higher impact. In the case
of our source data, we anticipate that the trail off is caused by
products with high use phases or large geometry.

FIGURE 4: Probability density function for the complete Stapler
bill of materials
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4.1.4 Hand Dryer Shown in Figure 5, the Hand Dryer
KDE, generated with 1450 sample BOMs, shows that the
complete BOM should have an impact estimation range of
[0.0×10−10 - 9.75×10−10] Species.yr / gram. The actual im-
pact of the Hand Dryer is 1.19×10−10 Species.yr/gram. The
effective environmental estimation impact range for the Hand
Dryer is [0.0×10−10 - 5.5×10−10] Species.yr / gram. The hand
dryer used in this validation happens to be an Eco-labeled hand
dryer. Thus the actual impact of the product is lower than might
be expected. However, found in a separate study, the actual im-
pact of a conventional dryer is 3.7×10−10 Species.yr / gram [9].
This dryer was not included in the source data for validation.
Assuming the same bill of materials is representative of the con-
ventional dryer, the generated Hand Dryer PDF appears to cap-
ture that probability of a more environmentally impactful hand
dryer. This is an important demonstration of the utility of the
PeeP method. That is, the PeeP method is able to ascertain a
range that is representative of a wide variety of use cases of the
given BOM, regardless of the perceived bias in the data.

FIGURE 5: Probability density function for the complete Stapler
bill of materials

4.2 Partial Bill of Materials
The results of the Partial bill of materials validation are

shown in figure 6. These PDFs are useful in the case of con-
current and ongoing design, where a user can determine com-
ponents that are required during design. These PDFs are useful
in scenarios where specific designs must contain certain compo-
nents either to complete the desired function or as prescribed by
the design constraints of the project. The results shown provide
a ’best guess’ estimation based on similarities between the par-

tial BOM and environmental impact of the source products in the
data. As such, the PDFs generated with a partial BOM are much
more of a fuzzy look at potential environmental impact than us-
ing a complete BOM with the PeeP methodology.

As shown in figure 6, all PDFs captured the true impact
of the complete product. However, there are substantial im-
pact estimation ranges due to the large uncertainty of the bill
of materials. The true impacts for each product are as fol-
lows: Mechanical pencil 3.92×10−10 Species.yr, Apple Peeler
Corer 3.25×10−8 Stapler Species.yr, 9.94×10−9 Species.yr,
and Hand Dryer 1.05×10−6 Species.yr. Besides the hand dryer
PDF, the large environmental impact ranges appear to dwarf the
actual impacts of the product. For example, the impact of the
mechanical pencil’s actual impact is 3.92×10−10 Species.yr,
while the suggested impact range is [0.0×10−6 - 7.0×10−6]
Species.yr. While the true impact does lie in the most probable
range, it is nearly impossible for the user to consider environ-
mental impacts lower. We hypothesis that in this case, a user is
unlikely to assume an impact more than two orders of magni-
tude lower than the x-axis range. More than likely, the user will
assume an impact range of [0.0×10−6 - 1.5×10−6] Species.yr,
thus likely overestimating the realized environmental impact of
the partial BOM product. However, these results are likely suf-
fering from the wide view of the source data.

The data used to validate the PeeP method features prod-
ucts that purposely represent a full breadth of consumer prod-
ucts. The products in the source data range from an impact of
[3.92×10−10 - 9.91×10−6] Species.yr with an average product
impact of 4.85×10−7 Species.yr. All of the generated PDFs in
figure 6 capture the average impact of the products within the
test data set. These findings suggest that if a more poignant data
set were selected, such as product data found in private company
repositories, the PeeP method would still help estimate product
impact based on partial BOM. Concisely put, the use of partial
BOM is subject to the bias of the data set used. In the test case,
the average product within the source data has a reasonably im-
pactful use phase. The Mechanical Pencil, Stapler, and Apple
Peeler Corer do not feature a significant use phase impact than
the data set’s bias. The Hand dryer does have a comparable use
phase impact to the source data set products.

4.3 Component Level Kernel Density Estimation
As mentioned previously, the single component KDEs can

be used to highlight the estimation of environmental impact con-
tribution caused by individual components. In figure 7, the indi-
vidual component KDE probability distribution functions for the
component ’Cap’ and ’Unclassified’ is shown. These compo-
nents are selected to support the results generated from the com-
plete BOM PDF for the mechanical pencil, figure 2. In figure
7, we can observe that the unclassified components contribute
to the uncertainly of impact estimation of the mechanical pen-
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(a) Mechanical Pencil partial BOM probability density function (b) Apple Peeler Corer partial BOM probability density function

(c) Stapler partial BOM probability density function (d) Hand Dryer partial BOM probability density function

FIGURE 6: Probability density functions for partial bill of materials of (a) Mechanical Pencil (b) Apple Peeler Corer (c) Stapler (d) Hand
Dryer

cil, as shown by the combined component PDF. The environ-
mental impact contribution for the cap ranges from [0.0×10−11

- 0.9×10−11] Species.yr./gram; whilst the unclassified compo-
nent ranges from [0.0×10−6 - 4.0×10−11] Species.yr/gram.
Using the PeeP method, users can look at contributions caused
by individual components or component clusters against a com-
plete BOM probability density function to identify components
that contribute to a wide range of impacts.

5 DISCUSSION
The PeeP method is useful by designers who need to esti-

mate the environmental impact of a product design given some
information regarding the components used. Particularly, sup-
pose the design phase is nearing completion, and a designer

knows the likely complete bill of materials. In that case, the PeeP
method can offer robust and precise predictions of the product’s
potential environmental impact. Using the single level compo-
nent PDF generated from the PeeP methodology, the user can
identify the ’pain’ point within the design. Components that re-
lay a large uncertainly to the impact of the product design can
highlight and be more carefully considered by the designer. Fi-
nally, if the design is iterative-based, a designer can still utilize
the partial bill of materials to understand the potential down-
stream impacts of a weakly realized design. Ultimately, the
PeeP method offers insight into product design’s environmental
sustainability prior to high-cost design activities such as beta-
prototyping, user case studies, and product deployment. The
PeeP method is a step in making sustainable design proactive
as opposed to reactive. However, the PeeP method is subject to a
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FIGURE 7: Probability density function for Cap, Unclassified
and Cap + Unclassified component(s)

number of realized drawbacks.
The PeeP method requires a reasonable expectation of de-

signer cognition to identify where among the probability distri-
butions their products genuinely lie. Factors including, intended
product use, exotic material choice, and purposeful sustainable
design, require the designer to empirically identify if those fact
ores positively or negative skew impact estimations. Designers
also need to be aware of how well their design is represented in
the supplied repository.

The PeeP methods accuracy is mainly dependent on the
repository data and the percent representation of the supplied
BOM. In the highlighted method validation, this was not a prob-
lem for the completed bill of materials environmental impact
estimations. We hypothesis that this was due to a sufficiently
diverse representation of consumer products. However, when
introducing uncertainly and fuzzy approximations of the partial
bill of materials, the PeeP method could not convey an environ-
mental impact estimation that was reasonably representative of
the related product’s full BOM. In this regard, it is essential that
the designer supply historical product data closely related to the
product design as possible.

6 CONCLUSION
In this paper, we introduced a novel method for estimat-

ing the environmental impact of a given bill of materials. This
method helps address growing concerns of product sustainabil-
ity, and greater climate change concerns felt around the globe. As
such, designers can employ the PeeP method to help inform en-
vironmentally sustainable component selection during the later
stages of product design. In short, this method allows the de-

signer to understand how components contribute to the environ-
mental impact of the design and determine a range of estimated
environmental impact of the potential realized product.

The PeeP method is leveraged against user-supplied histori-
cal product data. This data needs to include product BOMs, LCA
impact metrics per product, product, and component weight. The
input data is normalized to estimate the component impact ranges
based upon weight. Once supplied with a design’s complete or
partial bill of materials, the PeeP method employs kernel den-
sity estimation to generate probability density functions for the
bill of material, each BOM component, and all unique compo-
nent combinations. These generated PDFs allow visualization of
probable potential environmental impact caused by components,
the complete bill of materials, or partial bill of materials. As ex-
plored through method validation, the PeeP method demonstrates
promise in becoming a useful tool for global sustainability-
minded designers.

The PeeP method presented in our work aims to address
some of the presented issues in current LCA focused product
design research. First, the probabilistic approach of the method-
ology helps account for embedded uncertainty by relying on the
user intuition to define the “reasonable range” of impact based
on their supplied product and product found in the data set. Fur-
thermore, the PeeP method displays probability density functions
that show the uncertainty within each component LCA. Second,
the PeeP method uses complete product LCAs. Early product
design research that used LCAs are often reliant on component
level LCAs. Component level LCAs do not take into account im-
pact as related to the product the component is found within. It
is disingenuous to estimate the impact of a product design solely
on LCAs based on manufacturing and disposal. Product use does
accounts for a significant portion of the impact. Furthermore, us-
ing complete LCAs is generally what is more likely found in
design or product repositories given the comparative and itera-
tive nature of LCA as found in industry. Third and finally, the
PeeP method contributes to the ongoing state-of-the-art in mov-
ing questionable design into a proactive approach used during
design. However, a number of drawbacks within PeeP method-
ology can be improved upon and expanded on in future work.

The PeeP method can be improved by implementing ad-
justers to account for the material type of the components. This
should improve provided LCA impact ranges per component. As
of now, large data standard deviations can be caused by the im-
plicit nature of material selection within the PeeP method. Fur-
thermore, penalty constraints can be developed to depreciate the
effects of component weight in generating the PDFs. These con-
straints can help address scaling issues where component envi-
ronmental impact does not linearly scale with weight. Penalty
constraints can also account for exotic materials that do not meet
the standard assumptions. For example, titanium is less dense
than steel. Given the PeeP method’s current iteration, titanium
will be assumed to be less impactful even though titanium pro-

12 Copyright c© 2021 by ASME



cessing can be dramatically more impactful than steel process-
ing.

The PeeP method can be expanded by introducing functional
definitions as attached to components. Through the development
of novel methodologies, the PeeP method can be leveraged in
functional modeling to determine environmental impact ranges
of functional chains given all possible component combinations
that solve the functional chain. Furthermore, with the devel-
opment of grammar rules and component compatibility, future
methods can provide component combinations that are realistic
and environmentally sustainable. The realization of this method-
ology expansion can help move the PeeP method earlier in the
design phase, where designers are designing toward desired func-
tions.
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